\Box

Exercise 1. Prove that $Sⁿ$ has a nonzero vector field if and only if n is odd.

Solution. First note, that we have $v: S^n \to \mathbb{R}^{n+1}$ such that $v(x) \perp x$. Consider the case of S^1 and $(x_0, x_1) \mapsto (x_1, -x_0)$. Take $(x_0, x_1, x_2, x_3, \ldots, x_{2n+1}) \in S^{2n+1} \subseteq \mathbb{R}^{2n}$. Then we get $(x_1, -x_0, x_3, -x_2, \ldots, x_{2n+1}, -x_{2n})$ as image and there is nothing more obvious than that the product is zero, i.e. it's perpendicular.

Note, for $S^1 \subseteq \mathbb{C}$ it is $z \mapsto ez$, where e is the complex unit, usually denoted as i.

Now we want to prove that if $Sⁿ$ has a nonzero vector field, then n is odd. We use the fact that $deg(id) = 1$ and $deg(-id) = (-1)^{n+1}$. Take $v: S^n \to S^n$. If we show id ∼ −id, then $1 = (-1)^{n+1} \Rightarrow n$ is odd. The homotopy is $h(x, t)$ we are looking for is $h(x,t) = cos(t)x + sin(t)v(x)$, where $t \in [0, \pi]$. Also note $||h(x,t)|| = cos^2 t + sin^2 t = 1$. We are done. \Box

Exercise 2. Compute homology groups of oriented two dimensional surfaces using a suitable structure of CW-complex.

Solution. Denote M_q surface of genus g (it is the same as sphere with g handles, i.e. M_1 is torus and M_2 is double torus (homework 4). The CW-model is $e^0 \cup e_1^1 \cup \cdots \cup e_{2g}^1 \cup e^2$ and we have

$$
0 \to \mathbb{Z} \to \bigoplus_{1}^{2g} \mathbb{Z} \to \mathbb{Z} \to 0.
$$

Second differential is zero, $e^0 - e^0 = 0$. The first one is zero as well (glue the model, the arrows go with + and then -). Then we get $H_0 = \mathbb{Z}, H_1 = \bigoplus_{1}^{2g} \mathbb{Z}, H_2 = \mathbb{Z}$.

For nonorientable surfaces, N_q is modelled by one 2-dimensional disc which has boundary composed with g segments every of which repeats twice with the same orientation. So we have one cell in dimensions 2 and 0 and g cells in dimension one. We get (quite similarly)

$$
0\to \mathbb{Z}\to \bigoplus_{1}^g\mathbb{Z}\to \mathbb{Z}\to 0.
$$

This equality holds: $d[e^2] = 2[e_1^1] + 2[e_2^1] + \ldots$, so $H_2 = 0$, $H_0 = \mathbb{Z}$ and the only interesting case is

$$
H_1 = \frac{\mathbb{Z}[e_1^1, \dots, e_g^1]}{\mathbb{Z}[2e_1^1 + \dots + 2e_g^1]} = \mathbb{Z}_2 + \bigoplus_1^{g-1} \mathbb{Z}.
$$

Exercise 3. Have $f: S^n \to S^n$ map of degree k. (such map always exists). Let $X =$ $D^{n+1} \cup_f S^n$ and compute homology of X and the projection $p: X \to X/S^n$ in homology.

Solution. Easy, $X = e^0 \cup e^n \cup e^{n+1}$ and $0 \to \mathbb{Z} \stackrel{k}{\to} \mathbb{Z} \to 0 \to \cdots \to 0 \to \mathbb{Z} \to 0$, also

$$
S^{n} \to X^{(n)} \to X^{(n)} / (X^{(n)} - e^{n}) = S^{n}.
$$

We get $H_{n+1}(X) = 0, H_n = \mathbb{Z}_k, H_0(X) = \mathbb{Z}$. Note, $X/S^n \cong S^{n+1}$. So, for the p_* we have

$$
p_*\colon H_{n+1}(X) = 0 \stackrel{0}{\to} H_{n+1}(S^{n+1}) = \mathbb{Z}
$$

and

$$
p_*\colon H_n(X) = \mathbb{Z}_k \stackrel{0}{\to} H_n(S^{n+1}) = 0
$$

and at H_0 it is identity $\mathbb{Z} \to \mathbb{Z}$.

Let X be a topological space with finitely generated homological groups and let $H_i(X) =$ 0 for each sufficiently large i. Every finitely generated abelian group can be written as $\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \text{Tor}$, where Tor denote torsion part of the group. The number k is $k - times$

called the rank of the group.

Euler characteristic χ of X is defined by:

$$
\chi(X) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} H_i(X)
$$

Example. We know $H_i(S^n) = \begin{cases} \mathbb{Z}, & i = 0, n \end{cases}$ 0, otherwise. Thus $\chi(S^n) = 1 - (-1)^n$.

Exercise 4. Let (C_*, ∂) be a chain complex with homology $H_*(C_*)$. Prove that $\chi(X)$ = $\chi(C_*)$, where

$$
\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} C_i.
$$

Solution. We have two short exact sequences:

$$
0 \to Z_i \hookrightarrow C_i \xrightarrow{\partial} B_{i-1} \to 0
$$

$$
0 \to B_i \hookrightarrow Z_i \to Z_i/B_i = H_i \to 0,
$$

where C_i , cycles Z_i and boundaries B_i are free abelian groups, thus rank $C_i = \text{rank } Z_i +$ rank B_{i-1} and rank $H_i = \text{rank } Z_i - \text{rank } B_i$. Thus we have

$$
\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} Z_i + \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} B_{i-1}
$$

=
$$
\sum_{i=0}^{\infty} (-1)^i \operatorname{rank} Z_i - \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} B_i = \chi(X).
$$

Let X be a topological space with finitely generated homological groups and let $H_i(X) = 0$ for every sufficiently large i. Let $f: X \to X$ be a continuous map. Map f induces homomorphism on the chain complex $f_*\colon C_*(X) \to C_*(X)$ and on the homologiy groups

 \Box

 $H_*f: H_*(X) \to H_*(X)$, where $H_*f(\text{Tor } H_*(X)) \subset \text{Tor } H_*(X)$. Thus it induces homomorphism

$$
H_*f: H_*(X)/\operatorname{Tor} H_*(X) \to H_*(X)/\operatorname{Tor} H_*(X).
$$

Since $H_*(X)$ / Tor $H_*(X) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ $rank H_*(X)$, map H_*f can be written as a matrix, thus we

can compute its trace. So we can define the Lefschetz number of a map f :

$$
L(f) = \sum_{i=0}^{\infty} (-1)^i \operatorname{tr} H_i f.
$$

Similarly to the case of the Euler characteristic, it can be proved that

$$
\sum_{i=0}^{\infty} (-1)^{i} \operatorname{tr} H_{i} f = \sum_{i=0}^{\infty} (-1)^{i} \operatorname{tr} f_{i}.
$$

Theorem. If $L(f) \neq 0$, then f has a fixed point.

Exercise 5. Use the theorem above to show, that every cts map f on D^n and $\mathbb{R}P^n$ where n is even has a fixed point.

Solution. We know that that $H_i(D^n) = \begin{cases} \mathbb{Z}, & i = 0, \end{cases}$ 0, otherwise. Because $H_0 f : H_0(D^n) \cong \mathbb{Z} \rightarrow$ $\mathbb{Z} \cong H_0(D^n)$ can be only the identity, we have $L(f) = 1$, thus f has a fixed point. Since $H_i(\mathbb{R}P^n) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\mathbb{Z}, \qquad i = 0,$ $\mathbb{Z}/2$, $i < n, i$ odd; 0, otherwise, and $\mathbb{Z}/2$ is torsion, we have $L(f) = 1$ as in the

previous case.

Exercise 6. Let M be a smooth compact manifold. Prove, that there is a nonzero vector field on M if and only if $\chi(M) = 0$.

Solution. We will prove only implication \Rightarrow . Let v be a nonzero vector field on M. Define a map $X: [0,1] \times M \to M$ which satisfies $X(t,x) = v(X(t,x))$ for every $x \in M$ and $X(0, x) = x$. There exists t_0 such that $X(t_0, x) \neq x$. Denote $f(x) = X(t_0, x)$, thus f has no fixed point, thus $L(f) = 0$. Because f is homotopic to id and ${\rm tr}\, H_i$ id = rank $H_i(M)$, we get from homotopy invariance $0 = L(f) = L(id) = \chi(M)$. $\overline{}$

¹ $f_i: C_i(X) \to C_i(X)$

$$
\Box
$$