
M8130 Algebraic topology, tutorial 06, 2024 31. 10. 2024

Exercise 1. Use Z/2 coe�cients to show, that every cts map f : Sn → Sn satisfying

f(−x) = −f(x) has an odd degree.

Solution. The map f induces a map g : RP n → RP n, since f({x,−x}) ⊆
{
f(x),−f(x)

}
.

We have the short exact sequence1

σ � // σ1 + σ2
� // 2σ = 0

0 // C∗(RP n,Z/2) // C∗(S
n,Z/2) // C∗(RP n,Z/2) // 0,

where σ : ∆i → RP n is an arbitrary element of C∗(RP n), σ1, σ2 are its preimages of a
projection:

Sn

��
∆i

σ1,σ2
66

σ
// RP n

From the short exact sequence we get the long exact sequence

Hi(RP n;Z/2) //

g∗

��

Hi(S
n;Z/2) //

f∗

��

Hi(RP n;Z/2) //

g∗

��

Hi−1(RP n;Z/2)

g∗

��

// 0

Hi(RP n;Z/2) // Hi(S
n;Z/2) // Hi(RP n;Z/2) // Hi−1(RP n;Z/2) // 0

Because H0(RP n;Z/2) = Z/2 and g0 on H0(RP n;Z/2) is an isomorphism, we can show
by induction, that Hi(RP n,Z/2) = Z/2 and gi is an isomorphism for every i ≤ n− 1. An
induction step is shown on the following diagram (three isomorphisms imply the fourth):

0 // Z/2
∼= //

∼=
��

Z/2

∼=
��

0 // Z/2 ∼=
// Z/2

For i = n we have the following situation (the vertical isomorphisms were proved by
induction):

Z/2
∼= //

∼=
��

Z/2 0 //

?

��

Z/2
∼= //

∼=
��

Z/2 //

∼=
��

0

Z/2 ∼=
// Z/2 0 // Z/2 ∼=

// Z/2 // 0

Thus f∗ (the arrow marked by ?) has to be an isomorphism for Hn, thus it maps [1]2 to
[1]2, hence f has degree 1 mod 2.

Exercise 2. Let φ ∈ Ck(X;R), ψ ∈ C l(Y ;R). Prove δ(φ ∪ ψ) = δφ ∪ ψ + (−1)kφ ∪ δψ.
Use τ = [e0, . . . , ek+l+1] ∈ Ck+l+1(X).

12σ = 0 because of the Z/2 coe�cient.



M8130 Algebraic topology, tutorial 06, 2024 31. 10. 2024

Solution. Easily work out

δ(φ ∪ ψ)(τ) = (φ ∪ ψ)(δτ) = (φ ∪ ψ)
( k+l+1∑

i=0

(−1)iτ/[e0, . . . , êi, . . . , ek+l+1]
)
=

=
k∑

i=0

(−1)iφ(τ/[e0, . . . , êi, . . . , ek+1])ψ(τ/[ek+1, . . . , ek+l+1])+

+
k+l+1∑
i=k+1

(−1)iφ(τ/[e0, . . . , ek])ψ(τ/[ek, . . . , êi, . . . , ek+l+1]).

Now, the right hand side of the formula, the �rst part gives

(δφ ∪ ψ)(τ) = δφ(τ/[e0, . . . , ek+1]) · ψ(τ/[ek+1, . . . , ek+l+1]) =

= φ(δτ/[e0, . . . , ek+1]) · ψ(τ/[ek+1, . . . , ek+l+1]) =

=
k+1∑
i=0

(−1)iφ(δτ/[e0, . . . , êi, . . . , ek+1]) · ψ(τ/[ek+1, . . . , ek+l+1]).

The second part is

(−1)k(φ ∪ δψ)(τ) = (−1)kφ(τ/[e0, . . . , ek])δψ(τ/[ek, . . . , ek+l+1]) =

=
l+1∑
j=0

(−1)j+kφ(δτ/[e0, . . . , ek]) · ψ(τ/[ek, . . . , êk+j, . . . , ek+l+1]).

Now, the last summand of the �rst part plus the �rst summand of the second part yields

(−1)k+1φ(τ/[e0, . . . , ek])ψ(τ/[ek+1, . . . , ek+l+1])+

+(−1)kφ(τ/[e0, . . . , ek])ψ(τ/[ek+1, . . . , ek+l+1]) = 0,

and we are done, LHS = RHS.

Exercise 3. Compute the structure of graded algebra H∗(Sn × Sn;Z) for n even and n
odd. Use the following:

If Hn(Y ;R) is free �nitely generated group for all n and (X,A), Y are CW-complexes,

then

× : H∗(X,A;R)⊗H∗(Y ;R) → H∗(X × Y,A× Y ;R)

is an isomorphism of graded rings.

Solution. We will omit writing the Z coe�cients.
Now, H∗(Sn) ⊗ H∗(Sn) → H∗(Sn × Sn) and we know that for spheres H0 = Z with

generator 1 and Hn = Z, denote generator a. Also, a ∪ a ∈ H2n = 0, a ∪ a = 0, so we
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get Z[a]/⟨a2⟩ and deg(a) = n. We can write the same for the second, so denote the other
generator b and have deg(b) = n and we have Z[b]/⟨b2⟩.

Now we compute tensor product Z[a]/⟨a2⟩ ⊗ Z[b]/⟨b2⟩, we have four generators: 1a ⊗
1b, a⊗ 1b, 1a ⊗ b, a⊗ b, we will denote them 1, c, d, c · d. Compute

(a⊗ 1b) · (1a ⊗ b) = (−1)0·0(a · 1a)⊗ (1b · b) = a⊗ b,

because 0 is an idempotent element, i.e. 0·0 = 0, and (−1)n = 1 for n even, again, as in the
�rst exercise, we use Evenness of Zero. (We refer the reader to "Principia Mathematica"
Whitehead, Russell,(1910,1912,1913).) Continue with computation

(1a ⊗ b) · (a⊗ 1b) = (−1)n·n(1a · a)⊗ (b · 1b) = (−1)na⊗ b,

so the algebra we get is H∗(Sn × Sn) = Z[c, d]/⟨c2, d2, dc− (−1)ncd⟩. For n even we have
dc = cd.

Exercise 4. Prove that there is no multiplication on even dimensional spheres. Multipli-

cation on the sphere Sn is a map m : Sn × Sn → Sn such that there is an element 1 ∈ Sn

satisfying m(x, 1) = x,m(1, x) = x.
Hint: compute m∗ : H∗(Sn) → H∗(Sn × Sn), describe two rings.

Solution. We have H∗(Sn) = Z[γ]/⟨γ2⟩ and H∗(Sn × Sn) = Z[α, β]/⟨α2, β2⟩ = H∗(Sn) ⊗
H∗(Sn), because we already know, that αβ = βα. Our situation can be described with
two diagrams:

Sn i1 //

id $$

Sn × Sn

m
��
Sn

H∗(Sn) H∗(Sn × Sn)
i∗1oo

H∗(Sn)

m∗

OO

id

gg

Take m∗(γ) = aα + bβ with a, b ∈ Z and prove �rst, that a = b = 1. Use m ◦ i1 = id,
so i∗1(m

∗γ) = γ. This gives i∗1(aα + bβ) = γ and since i∗1(aα + bβ) = aγ, we have a = 1,
same for b. Final computation yields

0 = m∗(0) = m∗(γ2) = m∗(γ ∪ γ) = m∗γ ∪m∗γ =

= (α + β) ∪ (α + β) = α2 + αβ + βα + β2 = 0 + 2αβ + 0 ̸= 0,

and that, my friends, is a contradiction.

Exercise 5. Show commutativity of the diagram below. Use �ve lemma to prove that taking

any two µ's iso's, the third µ is iso as well.
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H∗(X,A)⊗H∗(Y ) //

µ

��

H∗(X)⊗H∗(Y )

µ

��

uu
H∗(A)⊗H∗(Y )

µ

��

δ∗⊗id
ii

H∗(X × Y,A× Y ) // H∗(X × Y )

uu
H∗(A× Y )

δ∗
ii

Solution. We will name the parts of the diagram as follows: back-square, upper-triangle,
lower-triangle, left-square, right-square. The triangles come from the long exact sequence
of of pairs (X,A) and (X × Y,A × Y ), the right-square commutativity comes from an
inclusion, back-square commutes as well (topology knowledge). The only problematic part
is the left-square and it is exercise on computation of connecting homomorphism δ∗.


