
MDA104 Introduction to Databases

4. SQL

Vlastislav Dohnal

MDA104, Vlastislav Dohnal, FI MUNI, 2024 2

Contents

History of The SQL Query Language

Basic Query Structure

Additional Basic Operations

Set Operations

Null Values

Aggregate Functions

Nested Subqueries

Join Expressions

Views

Modification of the Database

Data Definition Language

SQL Data Types and Schemas

Integrity Constraints

MDA104, Vlastislav Dohnal, FI MUNI, 2024 3

History
IBM Sequel language developed as part of System R project at the IBM
San Jose Research Laboratory

Renamed to Structured Query Language (SQL)

ANSI and ISO standard SQL:

SQL-86; SQL-89

SQL-92

SQL:1999 (recursive queries, triggers, Y2K compliant!)

SQL:2006 (better XML support, XQuery, …)

SQL:2008

SQL:2011 (adds support for temporal databases)

SQL:2016 (operation on JSON in a varchar attribute)

SQL:2019 (multidimensional arrays)

SQL:2023 (JSON data type, Property Graph Queries (SQL/PGQ))

Commercial systems offer most SQL-99 features

plus, varying feature sets from later standards and special proprietary
features

sometime varying in syntax.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 4

Basic Query Structure
A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where C

Ai represents an attribute

Ri represents a relation

C is a condition.

The result of an SQL query is a relation.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 5

The select Clause
The select clause lists the attributes desired in the result of a query

corresponds to the projection operation of the relational algebra

Example:

Relation

instructor (id, name, dept_name, salary)

Find the names of all instructors:

select name

from instructor

NOTE: SQL names are case insensitive (i.e., you may use upper- or

lower-case letters.)

E.g., Name ≡ NAME ≡ name

Some people use upper case wherever we use bold font.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 6

The select Clause (Cont.)
SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates,

insert the keyword distinct after select.

Find the names of all departments of instructors, and remove duplicates

select distinct dept_name

from instructor

The keyword all specifies that duplicates not to be removed.

select all dept_name

from instructor

It is also an implicit behavior when the keyword all is omitted.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 7

The select Clause (Cont.)
Relation

instructor (id, name, dept_name, salary)

An asterisk in the select clause denotes “all attributes”

select *

from instructor

The select clause can contain arithmetic expressions

Involving the operations: +, –, , and /,

Operating on constants or attributes of tuples.

Also function can be used (nullif(), upper(), to_char(), …)

The query:

select id, name, dept_name, salary/12

from instructor

would return a relation that is the same as the instructor relation, except

that the value of the attribute salary is divided by 12.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 8

The where Clause
The where clause specifies conditions that the result must satisfy

Corresponds to the selection predicate of the relational algebra.

To find all instructors in 'Comp. Sci.' department with salary > 80000

select name

from instructor

where dept_name = 'Comp. Sci.' and salary > 80000

Comparison results can be combined using the logical connectives

and, or, not

Comparisons can be applied to results of arithmetic expressions.

select name

from instructor

where salary / 12 > 6000

MDA104, Vlastislav Dohnal, FI MUNI, 2024 9

The from Clause
The from clause lists the relations involved in the query

Corresponds to the Cartesian product operation of the relational

algebra.

Find the Cartesian product instructor  teaches

select 

from instructor, teaches

Generates every possible instructor-teaches pair, with all attributes

from both relations.

Cartesian product not very useful directly,

but useful when combined with a where-clause condition (selection

operation in relational algebra).

MDA104, Vlastislav Dohnal, FI MUNI, 2024 10

Cartesian Product
instructor teaches

instructor  teaches

MDA104, Vlastislav Dohnal, FI MUNI, 2024 11

Joins
Relations:

instructor (id, name, dept_name, salary)

course (course_id, title, dept_name)

section (course_id, sec_id, semestr, year)

teaches (id, course_id, sec_id)

For all instructors who teach courses, find their names and the course id
of the courses they teach.

select name, course_id
from instructor, teaches
where instructor.id = teaches.id

Find the course id, title, semester and year of each course offered by the
“Comp. Sci.” department

select course.course_id, title, semester, year
from course, teaches, section
where course.course_id = teaches.course_id and

teaches.course_id = section.course_id and
teaches.sec_id = section.sec_id and
dept_name = 'Comp. Sci.'

MDA104, Vlastislav Dohnal, FI MUNI, 2024 12

Natural Join

Natural join matches tuples with the same values for all common

attributes, and retains only one copy of each common column

For relations:

instructor (id, name, dept_name, salary)

teaches (id, course_id, sec_id, semestr, year)

select * from instructor natural join teaches;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 13

Natural Join (Cont.)
Danger in natural join:

beware of unrelated attributes with same name which get equated incorrectly

Relations:

instructor (id, name, dept_name, salary)

course (course_id, title, dept_name)

section (course_id, sec_id, semester, year)

teaches (id, course_id, sec_id)

List the names of instructors along with the titles of courses that they teach.

Incorrect version (equates course.dept_name with instructor.dept_name)

select name, title
from (instructor natural join teaches) natural join course;

Correct version

select name, title
from (instructor natural join teaches), course
where teaches.course_id= course.course_id;

Another correct version

select name, title
from (instructor natural join teaches) join course using(course_id);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 14

The Rename Operation
The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

E.g.,

select id, name, salary/12 as monthly_salary

from instructor

Find the names of all instructors who have a salary higher than some

instructor in ‘Comp. Sci.’

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

Keyword as is optional and may be omitted in renaming relations

instructor as T ≡ instructor T

MDA104, Vlastislav Dohnal, FI MUNI, 2024 15

Ordering the Display of Tuples

List in alphabetic order the names of all instructors

select name

from instructor

order by name

We may specify desc for descending order or asc for ascending

order, for each attribute.

Ascending order is the default.

Example: … order by name desc

Can sort on multiple attributes

Example: … order by dept_name, name

or … order by dept_name desc, name asc

MDA104, Vlastislav Dohnal, FI MUNI, 2024 16

Where Clause Predicates
SQL includes a between comparison operator

Example:

Find the names of all instructors with salary between $90,000 and

$100,000 (that is,  $90,000 and  $100,000)

select name

from instructor

where salary between 90000 and 100000

Tuple comparison

select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 17

String Operations
SQL includes a string-matching operator for comparisons on character
strings.

The operator “like” uses patterns that are described using two
special characters:

percent (%). The % character matches any substring.

underscore (_). The _ character matches any character.

Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

Match the string containing “100 %”

… like ‘%100 \%%' escape '\'

SQL supports a variety of string operations such as

concatenation (using “||”)

converting from upper to lower case (and vice versa)

functions upper() and lower()

finding string length, extracting substrings, etc.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 18

Null Values
It is possible for tuples to have a null value, denoted by null, for some

of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null

Example: 5 + null returns null

The predicate is null can be used to check for null values.

Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

MDA104, Vlastislav Dohnal, FI MUNI, 2024 19

Null Values and Three-valued Logic

Any comparison with null returns null

Example: 5 < null or null <> null or null = null

Three-valued logic using the truth value null:

OR: (null or true) = true

(null or false) = null

(null or null) = null

AND: (true and null) = null

(false and null) = false

(null and null) = null

NOT: (not null) = null

Result of where clause predicate is treated as false if it evaluates to

null

MDA104, Vlastislav Dohnal, FI MUNI, 2024 20

Duplicates

In relations with duplicates, SQL can define how many copies of

tuples appear in the result.

Multiset versions of some of the relational algebra operators

Given multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies the

selection ,, then there are c1 copies of t1 in  (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple

A (t1) in A (r1)

where A (t1) denotes the projection of the single tuple t1.

3. r1  r2: If there are c1 copies of tuple t1 in r1 and c2 copies of tuple

t2 in r2, there are c1  c2 copies of the tuple t1 . t2 in r1  r2

MDA104, Vlastislav Dohnal, FI MUNI, 2024 21

Duplicates (Cont.)

Example:

Suppose multiset relations r1 (A, B) and r2 (C) are as follows:

r1 = {(1, a), (2,a)} r2 = {(2), (3), (3)}

Then B(r1) would be

{(a), (a)}

While B(r1)  r2 would be

{(a,2), (a,3), (a,3), (a,2), (a,3), (a,3)}

SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the rel. alg. expression:

))((
21,,, 21 mPAAA

rrr
n

  

MDA104, Vlastislav Dohnal, FI MUNI, 2024 22

Set Operations (union, intersect, except)

Relation:

teaches (id, course_id, sec_id, semester, year)

Find courses that ran in Fall 2009 or in Spring 2010

Find courses that ran in Fall 2009 and in Spring 2010

Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from teaches where semester = ‘Fall’ and year = 2009)

union

(select course_id from teaches where semester = ‘Spring’ and year = 2010)

(select course_id from teaches where semester = ‘Fall’ and year = 2009)

intersect

(select course_id from teaches where semester = ‘Spring’ and year = 2010)

(select course_id from teaches where semester = ‘Fall’ and year = 2009)

except

(select course_id from teaches where semester = ‘Spring’ and year = 2010)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 23

Set Operations

Set operations union, intersect, and except

Each of the above operations automatically eliminates duplicates

To retain all duplicates, use the corresponding multiset versions

union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

m + n times in r union all s

min(m, n) times in r intersect all s

max(0, m – n) times in r except all s

MDA104, Vlastislav Dohnal, FI MUNI, 2024 25

Aggregate Functions

These functions operate on the multiset of values of a column of

a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

MDA104, Vlastislav Dohnal, FI MUNI, 2024 26

Aggregate Functions (Cont.)
Relations:

instructor (id, name, dept_name, salary)

teaches (id, course_id, sec_id, semestr, year)

Find the average salary of instructors in the Computer Science
department

select avg (salary)
from instructor
where dept_name= ’Comp. Sci.’;

Find the total number of instructors who teach a course in the Spring
2010 semester

select count (distinct id)
from teaches
where semester = ’Spring’ and year = 2010

Find the number of tuples in the course relation

select count (*)
from course;

ℊ𝑎𝑣𝑔(𝑠𝑎𝑙𝑎𝑟𝑦) 𝜎𝑑𝑒𝑝𝑡𝑛𝑎𝑚𝑒=
′𝐶𝑜𝑚𝑝.𝑆𝑐𝑖.′ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟

MDA104, Vlastislav Dohnal, FI MUNI, 2024 27

Aggregate Functions – Group By
Find the average salary of instructors in each department

select dept_name, avg (salary)

from instructor

group by dept_name;

avg

MDA104, Vlastislav Dohnal, FI MUNI, 2024 28

Aggregation (Cont.)

Attributes in select clause outside of aggregate functions must appear

in group by list

Erroneous query:

select dept_name, id, avg (salary)

from instructor

group by dept_name;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 29

Aggregate Functions – Having Clause

Relations:

instructor (id, name, dept_name, salary)

Find the names and average salaries of all departments whose

average salary is greater than 42,000

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups.

Note2: so aggregate functions cannot be used in where clause.

select dept_name, avg (salary)

from instructor

group by dept_name

having avg (salary) > 42000;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 30

Null Values and Aggregates
Total all salaries

select sum (salary)

from instructor

Above statement ignores null amounts

Result is null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values

on the aggregated attributes

What if collection has only null values?

count returns 0

all other aggregates return null

MDA104, Vlastislav Dohnal, FI MUNI, 2024 31

Nested Subqueries

SQL provides a mechanism for the nesting of subqueries.

A subquery is a select-from-where expression that is nested within

another query.

scalar query

derived relation

nested subquery

A common use of nested subqueries is to perform tests for

set membership,

set comparisons, and

set cardinality.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 32

Example Query: set membership

Operators: IN NOT IN

Relations:

teaches (id, course_id, sec_id, semester, year)

Find courses offered in Fall 2009 and in Spring 2010

Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year = 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year = 2010);

select distinct course_id

from section

where semester = ’Fall’ and year = 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year = 2010);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 33

Example Query: set membership (cont.)

Relations:

instructor (id, name, dept_name, salary)

teaches (id, course_id, sec_id, semester, year)

takes (id, course_id, sec_id, semester, year)

student (id, name)

Find the total number of (distinct) students who have taken course sections

taught by the instructor with ID 10101

Note: Above query can be written in a much simpler manner.

The formulation above is simply to illustrate SQL features.

(select course_id, sec_id, semester, year

from teaches

where teaches.ID = 10101);

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

Attribute ID is a

reference to

student, here.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 34

Set Comparison

Relations:

instructor (id, name, dept_name, salary)

Find names of instructors with salary greater than that of some (at

least one) instructor in the Biology department.

Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 35

Definition of some Clause

F <comp> some r   t  r such that (F <comp> t)

Where <comp> can be: < <=, >= > = <>, !=

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5(5 != some) = true (since 0  5)

Read: 5 < some tuple in the relation

(5 < some

) = true(5 = some

(= some)  in

However, (!= some)  not in

any is an

equivalent

of some

MDA104, Vlastislav Dohnal, FI MUNI, 2024 36

Definition of all Clause

F <comp> all r   t  r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5 != all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

(!= all)  not in

However, (= all)  in

Set comparison and NULL values

MDA104, Vlastislav Dohnal, FI MUNI, 2024 37

0
5

null

(5 in) = true

0
5

6

(null in) = false

0
5

null

(2 not in) = false!!!

0
5

null

(null in) = false!!!

0
5

null

(2 in) = false

MDA104, Vlastislav Dohnal, FI MUNI, 2024 38

Example Query

Relations:

instructor (id, name, dept_name, salary)

Find the names of instructors whose salary is greater than the salary

of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept name = ’Biology’);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 39

Test for Empty Relations

The exists construct returns the value true if the argument subquery

is nonempty.

exists (r)  r  Ø

not exists (r)  r = Ø

MDA104, Vlastislav Dohnal, FI MUNI, 2024 40

Correlation Variables
Relations:

section (course_id, sec_id, semestr, year)

Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year = 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year = 2010

and S.course_id = T.course_id);

Correlated subquery

Correlation name or correlation variable

MDA104, Vlastislav Dohnal, FI MUNI, 2024 41

Not Exists

Relations:

student (id, name)

takes (id, course_id, sec_id, semester, year)

course (course_id, title, dept_name)

Find students who have taken all courses offered in the Biology department.

Remark that X – Y = Ø  X  Y

Note: Cannot write this query using = all and its variants

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

MDA104, Vlastislav Dohnal, FI MUNI, 2024 42

Derived Relations
SQL allows a subquery expression to be used in the from clause

Find the departments where the average salary is greater than $42,000.

Print the average salary too.

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name) as dept_avg

where avg_salary > 42000;

Note that we do not need to use the having clause

Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

from instructor

group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 43

Scalar Subquery
Relations:

instructor (id, name, dept_name, salary)

department (dept_name, building, budget)

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 44

Joined Relations

Join operations take two relations and return as a result another

relation.

A join operation is a Cartesian product which requires that tuples in

the two relations match (under some condition).

It also specifies the attributes that are present in the result of the

join.

The join operations are typically used as sub-query expressions in the

from clause.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 45

Outer Join

An extension of the join operation that avoids loss of information.

Computes the join and then adds tuples form one relation that does

not match tuples in the other relation to the result of the join.

Uses null values.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 47

Left Outer Join

course prereq

course natural left outer join prereq

prereq_id

MDA104, Vlastislav Dohnal, FI MUNI, 2024 48

Right Outer Join

course prereq

course natural right outer join prereq

prereq_id

MDA104, Vlastislav Dohnal, FI MUNI, 2024 49

Full Outer Join

course prereq

course natural full outer join prereq

prereq_id

MDA104, Vlastislav Dohnal, FI MUNI, 2024 50

Joined Relations
Join operations take two relations and return as a result another

relation.

These additional operations are typically used as subquery

expressions in the from clause

Join condition – defines which tuples in the two relations match, and

what attributes are present in the result of the join.

Join type – defines how tuples in each relation that do not match any

tuple in the other relation (based on the join condition) are treated.

Join type

inner join

left outer join

right outer join

full outer join

Join condition Usage

natural r1 natural <join_type> r2

on <predicate> r1 <join_type> r2 on <predicate>

using (A1,A2,…An) r1 <join_type> r2 using (A1,A2,…,An)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 51

Joined Relations – Examples

course inner join prereq on course.course_id = prereq.course_id

course left outer join prereq on course.course_id = prereq.course_id

prereq_id

prereq_idcourse_id

course_id

MDA104, Vlastislav Dohnal, FI MUNI, 2024 52

Joined Relations – Examples

course natural right outer join prereq

course full outer join prereq using (course_id)

prereq_id

prereq_id

MDA104, Vlastislav Dohnal, FI MUNI, 2024 54

Views
In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the

database.)

Consider a person who needs to know an instructor’s name and

department, but not the salary. This person should see a relation

described, in SQL, by

select id, name, dept_name

from instructor

A view provides a mechanism to hide certain data from the view

of certain users.

Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 55

View Definition

A view is defined using the create view statement which has the

form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view

name is represented by v.

Once a view is defined, the view name can be used to refer to the

virtual relation that the view generates.

View definition is not the same as creating a new relation by

evaluating the query expression

Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 56

Example Views

A view of instructors without their salary

create view faculty as

select ID, name, dept_name

from instructor

Find all instructors in the Biology department

select name

from faculty

where dept_name = ‘Biology’

Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary)

as select dept_name, sum (salary)

from instructor

group by dept_name;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 57

Views Defined Using Other Views

create view physics_fall_2009 as

select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = ’Physics’

and section.semester = ’Fall’

and section.year = ’2009’;

create view physics_fall_2009_watson as

select course_id, room_number

from physics_fall_2009

where building = ’Watson’;

MDA104, Vlastislav Dohnal, FI MUNI, 2024 58

View Expansion

Expand use of a view in a query/another view

create view physics_fall_2009_watson as

select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = ’Physics’

and section.semester = ’Fall’

and section.year = ’2009’)

where building = ’Watson’;

MDA104, Vlastislav Dohnal, FI MUNI, 2024

60

View Expansion

A way to define the meaning of views defined in terms of other views.

Let view v1 be defined by an expression e1 that may itself contain

uses of view relations.

View expansion of an expression repeats the following replacement

step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

As long as the view definitions are not recursive, this loop will

terminate.

Recursive views/queries are typically limited to the construct:

WITH RECURSIVE myquery (A, B, …) AS (

SELECT A, B, … FROM table WHERE …

UNION

SELECT A, B, … FROM myquery, table, …

) SELECT * FROM myquery

Non-recursive

part of query

Recursive

part

MDA104, Vlastislav Dohnal, FI MUNI, 2024 61

Modification of the Database – Deletion

Relations:

instructor (id, name, dept_name, salary)

department (dept_name, building, budget)

Delete all instructors

delete from instructor ;

Delete all instructors from the Finance department

delete from instructor

where dept_name= ’Finance’;

Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

delete from instructor

where dept name in (select dept name

from department

where building = ’Watson’);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 62

Example Query
Relations:

instructor (id, name, dept_name, salary)

Delete all instructors whose salary is less than the average salary of
instructors

Problem: as we delete tuples from instructor, the average salary
changes

Solution used in SQL:

First, compute avg salary and find all tuples to delete

Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

delete from instructor

where salary < (select avg (salary) from instructor);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 63

Modification of the Database – Insertion

Relations:

course (course_id, title, dept_name, credits)

Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

or equivalently (this is a recommended variant!)

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 64

Modification of the Database – Insertion

Relations:

student (id, name, dept_name, tot_credits)

Add a new tuple to student with tot_credits set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

or equivalently

insert into student (id, name, dept_name)

values (’3003’, ’Green’, ’Finance’);

The value for the unspecified attribute is automatically set to null

or the default value assigned to the attribute is used instead.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 65

Modification of the Database – Insertion

Add all instructors to the student relation with tot_credits set to 0

insert into student

select ID, name, dept_name, 0

from instructor

The select-from-where statement is evaluated fully before any of its

results are inserted into the relation

Otherwise queries like this would cause problems

insert into table1 select * from table1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 66

Modification of the Database – Updates

Increase salaries of instructors whose salary is over $100,000 by 3%,

and all others receive a 5% raise

Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

The order is important

Can be done better using the case statement (next slide)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 67

Case Statement for Conditional Updates

Same query as before but with case statement

update instructor

set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

MDA104, Vlastislav Dohnal, FI MUNI, 2024 68

Updates with Scalar Subqueries

Re-compute and update tot_credits value for all students

update student

set tot_credits = (select sum(credits)

from takes natural join course

where student.ID= takes.ID and

takes.grade <> ’F’ and

takes.grade is not null);

Sets tot_credits to null for students who have not taken any course

So, instead of sum(credits), use:

case

when sum(credits) is not null then sum(credits)

else 0

end

Or, use the function COALESCE

… (select coalesce(sum(credits), 0) from …

Modification of the Database – Views

Modifications of views must be translated to modifications of the actual

relations in the database.

Consider the view faculty where instructors’ salary is hidden:

create view faculty as

select ID, name, dept_name

from instructor

Since we allow a view name to appear wherever a relation name is

allowed, the user may write:

insert into faculty

values (’3003’, ’Green’, ’Finance’);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 69

Recall: instructor (id, name, dept_name, salary)

Modification of the Database – Views (cont.)

The previous insertion must be represented by an insertion into the

actual relation instructor from which the view faculty is constructed.

An insertion into instructor requires a value for salary. The insertion

can be dealt with by either

rejecting the insertion and returning an error message to the user;

or

inserting the tuple

(’3003’, ’Green’, ’Finance’, null)

into the instructor relation.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 70

MDA104, Vlastislav Dohnal, FI MUNI, 2024 72

Data Definition Language

Allows the specification of not only a set of relations but also

information about each relation, including:

The schema for each relation.

The domain of values associated with each attribute.

Integrity constraints

The set of indices to be maintained for each relation.

Security and authorization information for each relation.

The physical storage structure of each relation on disk.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 73

Create Table Construct
An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
integrity-constraint1,
...,
integrity-constraintk)

r is the name of the relation

each Ai is an attribute name in the schema of relation r

Di is the data type of values in the domain of attribute Ai

Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2),

primary key (id))

insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

insert into instructor values (‘10211’, null, ’Biology’, 66000);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 74

Domain Types in SQL
char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum
length n.

int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer
domain type).

numeric(p,d). Fixed point number, with user-specified precision of p digits,
with d digits to the right of decimal point.

real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at least n
digits.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 75

Domain Types in SQL (cont.)

date: Dates, containing a (4 digit) year, month and date

Example: date ‘2005-07-27’

time: Time of day, in hours, minutes and seconds.

Example: time ‘09:00:30’ time ‘09:00:30.75’

timestamp: date plus time of day

Example: timestamp ‘2005-07-27 09:00:30.75’

interval: period of time

Example: interval ‘1’ day

Subtracting a date/time/timestamp value from another gives an

interval value

Interval values can be added to date/time/timestamp values

MDA104, Vlastislav Dohnal, FI MUNI, 2024 76

Integrity Constraints

Integrity constraints guard against accidental damage to the database,

by ensuring that authorized changes to the database do not result in a

loss of data consistency.

A checking account must have a balance greater than $10,000.00.

A salary of a bank employee must be at least $4.00 an hour.

A customer must have a (non-null) phone number.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 77

Constraints on a Single Relation

not null

primary key

unique

check (P), where P is a predicate

MDA104, Vlastislav Dohnal, FI MUNI, 2024 78

Not Null and Unique Constraints

not null

Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

primary key (A1, A2, …, Am)

Attributes A1, A2, … Am forms the relation’s primary key.

Equals to unique and not null.

unique (A1, A2, …, Am)

The unique specification states that the values in attributes A1, A2,

… Am cannot repeat within the relation.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 79

The check clause

check (P)

where P is a predicate

Example: Ensure that semester is one of fall or spring:

create table section (

course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semester in (’Fall’, ’Spring’))

);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 80

Referential Integrity

Ensures that a value that appears in one relation for a given set of

attributes also appears for a certain set of attributes in another

relation.

Example: If “Biology” is a department name appearing in one of

the tuples in the instructor relation, then there exists a tuple in the

department relation for “Biology”.

Let A be a set of attributes. Let R and S be two relations that contain

attributes A and where A is the primary key of S.

E.g.: S(A,…) R(X, …, A, …)

A is said to be a foreign key of R if for any value of A appearing in R

it also appears in S.

Π𝐴 𝑅 ⊆ Π𝐴 𝑆

MDA104, Vlastislav Dohnal, FI MUNI, 2024 81

Referential Integrity in Create Table

foreign key (Am, ..., An) references r

Example: Declare dept_name as the foreign key referencing

department relation

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department

);

Notice: Schema of department is (dept_name, building).

MDA104, Vlastislav Dohnal, FI MUNI, 2024 82

Cascading Actions in Referential Integrity

create table course (

course_id char(5) primary key,

title varchar(20),

dept_name varchar(20) references department

)

create table course (

…

dept_name varchar(20),

foreign key (dept_name) references department

on delete cascade

on update cascade,

. . .

)

Alternative actions to cascade: set null, set default

E.g. … ON DELETE CASCADE SET NULL

MDA104, Vlastislav Dohnal, FI MUNI, 2024 83

Complex Check Clauses

Assume table section(course_id, sec_id, semester, year,

time_slot_id, building, room_number)

We define this constraint:

check (time_slot_id in (select time_slot_id from time_slot))

Why not use a foreign key here?

If time_slot_id is not the primary key in time_slot

Every section has at least one instructor teaching the section.

How to write this?

By a subquery…

Unfortunately: subquery in check clause not supported by pretty

much any database

Alternative: triggers

MDA104, Vlastislav Dohnal, FI MUNI, 2024 84

Drop and Alter Table Constructs

drop table r

DROP TABLE instructor;

alter table r …

alter table r add A D

where A is the name of the attribute to be added to relation r

and D is the domain of A.

All tuples in the relation are assigned null as the value for the

new attribute.

ALTER TABLE instructor ADD rating CHAR(1);

alter table r drop A

where A is the name of an attribute of relation r

Dropping of attributes not supported by many databases.

ALTER TABLE instructor DROP rating;

E-R Diagram for a University Enterprise

85MDA104, Vlastislav Dohnal, FI MUNI, 2024

MDA104, Vlastislav Dohnal, FI MUNI, 2024 86

And a Few More Relation Definitions

create table student (

ID varchar(5) primary key,

name varchar(20) not null,

dept_name varchar(20) not null,

tot_cred numeric(3,0),

foreign key (dept_name) references department);

create table course (

course_id varchar(8) primary key,

title varchar(50),

dept_name varchar(20) not null,

credits numeric(2,0),

foreign key (dept_name) references department);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 87

And more still

create table section (

course_id varchar(8) references course,

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

building varchar(8),

room_number varchar(8),

time_slot_id integer references time_slot,

primary key (course_id, sec_id, semester, year),

foreign key (building, room_number) references classroom);

MDA104, Vlastislav Dohnal, FI MUNI, 2024 88

And more…

create table takes (

ID varchar(5),

course_id varchar(8),

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

grade varchar(2),

foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references section,

primary key (ID, course_id, sec_id, semester, year)

);

This is a weak entity set!

Summary (Takeaways)

What is SQL and what parts is it divided into

DDL, DML, DCL (controls transactions…)

Be able to formulate an SQL query

SELECT, INSERT, UPDATE, DELETE

CREATE TABLE, CREATE VIEW

Understand the joins of relations – to be able to explain differences

Nested queries (what it is and where it can be used)

Aggregate functions

NULL values and their impact on query evaluation

Types of integrity constraints

MDA104, Vlastislav Dohnal, FI MUNI, 2024 89

	Snímek 1: MDA104 Introduction to Databases 4. SQL
	Snímek 2: Contents
	Snímek 3: History
	Snímek 4: Basic Query Structure
	Snímek 5: The select Clause
	Snímek 6: The select Clause (Cont.)
	Snímek 7: The select Clause (Cont.)
	Snímek 8: The where Clause
	Snímek 9: The from Clause
	Snímek 10: Cartesian Product
	Snímek 11: Joins
	Snímek 12: Natural Join
	Snímek 13: Natural Join (Cont.)
	Snímek 14: The Rename Operation
	Snímek 15: Ordering the Display of Tuples
	Snímek 16: Where Clause Predicates
	Snímek 17: String Operations
	Snímek 18: Null Values
	Snímek 19: Null Values and Three-valued Logic
	Snímek 20: Duplicates
	Snímek 21: Duplicates (Cont.)
	Snímek 22: Set Operations (union, intersect, except)
	Snímek 23: Set Operations
	Snímek 25: Aggregate Functions
	Snímek 26: Aggregate Functions (Cont.)
	Snímek 27: Aggregate Functions – Group By
	Snímek 28: Aggregation (Cont.)
	Snímek 29: Aggregate Functions – Having Clause
	Snímek 30: Null Values and Aggregates
	Snímek 31: Nested Subqueries
	Snímek 32: Example Query: set membership
	Snímek 33: Example Query: set membership (cont.)
	Snímek 34: Set Comparison
	Snímek 35: Definition of some Clause
	Snímek 36: Definition of all Clause
	Snímek 37: Set comparison and NULL values
	Snímek 38: Example Query
	Snímek 39: Test for Empty Relations
	Snímek 40: Correlation Variables
	Snímek 41: Not Exists
	Snímek 42: Derived Relations
	Snímek 43: Scalar Subquery
	Snímek 44: Joined Relations
	Snímek 45: Outer Join
	Snímek 47: Left Outer Join
	Snímek 48: Right Outer Join
	Snímek 49: Full Outer Join
	Snímek 50: Joined Relations
	Snímek 51: Joined Relations – Examples
	Snímek 52: Joined Relations – Examples
	Snímek 54: Views
	Snímek 55: View Definition
	Snímek 56: Example Views
	Snímek 57: Views Defined Using Other Views
	Snímek 58: View Expansion
	Snímek 60: View Expansion
	Snímek 61: Modification of the Database – Deletion
	Snímek 62: Example Query
	Snímek 63: Modification of the Database – Insertion
	Snímek 64: Modification of the Database – Insertion
	Snímek 65: Modification of the Database – Insertion
	Snímek 66: Modification of the Database – Updates
	Snímek 67: Case Statement for Conditional Updates
	Snímek 68: Updates with Scalar Subqueries
	Snímek 69: Modification of the Database – Views
	Snímek 70: Modification of the Database – Views (cont.)
	Snímek 72: Data Definition Language
	Snímek 73: Create Table Construct
	Snímek 74: Domain Types in SQL
	Snímek 75: Domain Types in SQL (cont.)
	Snímek 76: Integrity Constraints
	Snímek 77: Constraints on a Single Relation
	Snímek 78: Not Null and Unique Constraints
	Snímek 79: The check clause
	Snímek 80: Referential Integrity
	Snímek 81: Referential Integrity in Create Table
	Snímek 82: Cascading Actions in Referential Integrity
	Snímek 83: Complex Check Clauses
	Snímek 84: Drop and Alter Table Constructs
	Snímek 85: E-R Diagram for a University Enterprise
	Snímek 86: And a Few More Relation Definitions
	Snímek 87: And more still
	Snímek 88: And more…
	Snímek 89: Summary (Takeaways)

