
MDA104 Introduction to Databases

6. Transactions

Vlastislav Dohnal

MDA104, Vlastislav Dohnal, FI MUNI, 2024 2

Transactions

Transaction Concept

Transaction State

Concurrent Executions

Serializability

Recoverability

Implementation of Isolation

Transaction Definition in SQL

Testing for Serializability.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 3

Transaction Concept

A transaction is a unit of program execution that accesses and

possibly updates various data items.

E.g. transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

7. commit

Main issues to deal with:

Transaction interruption due failures of various kinds

such as hardware failures and system crashes

Concurrent execution of multiple transactions

Termination of transaction using abort command

MDA104, Vlastislav Dohnal, FI MUNI, 2024 4

Example of Fund Transfer
Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

7. commit

Atomicity requirement

if the transaction fails after step 3 and before step 6, money will be “lost”
leading to an inconsistent database state

Failure could be due to software or hardware

the system should ensure that updates of a partially executed transaction
are not reflected in the database

Durability requirement

once the user has been notified that the transaction has completed (i.e.,
the transfer of the $50 has taken place), the updates to the database by
the transaction must persist even if there are software or hardware
failures.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 5

Example of Fund Transfer (Cont.)
Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

7. commit

Consistency requirement

E.g. the sum of A and B is unchanged by the execution of the transaction

In general, consistency requirements include

Explicitly specified integrity constraints such as primary keys and foreign
keys

Implicit integrity constraints

E.g. sum of balances of all accounts, minus sum of loan amounts must
equal value of cash-in-hand

A transaction must see a consistent database.

During transaction execution the database may be temporarily inconsistent.

When the transaction completes successfully the database must be consistent

Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer (Cont.)
Transaction to transfer $50 from account A to account B:

Isolation requirement – if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated database, it
will see an inconsistent database

The sum A + B will be less than it should be.

Isolation can be ensured trivially by running transactions serially

that is, one after the other.

However, executing multiple transactions concurrently has significant
benefits, as we will see later.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 6

Transaction

T11.read(A)
2.A := A – 50
3.write(A)
4.read(B)
5.B := B + 50
6.write(B)
7.commit

Transaction

T21.read(A)
2.read(B)
3.print(A + B)
4.commit

MDA104, Vlastislav Dohnal, FI MUNI, 2024 7

ACID Properties
A transaction is a unit of program execution that accesses and possibly updates various
data items.

It is a sequence of operations that form a desired outcome (the unit of program).

To preserve the integrity of data the database system must ensure:

Atomicity.

Either all operations of the transaction are properly reflected in the database or
none are.

Consistency.

Execution of a transaction in isolation preserves the consistency of the database.

Isolation.

Although multiple transactions may execute concurrently, each transaction must
be unaware of other concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed transactions.

That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj,
finished execution before Ti started, or Tj started execution after Ti finished.

Durability.

After a transaction completes successfully, the changes it has made to the
database persist, even if there are system failures.

Transaction State
Active

the initial state

the transaction stays in this
state while it is executing

Partially committed

after the final statement has
been executed.

Committed

after successful completion.

Failed

after the discovery that normal execution can no longer proceed.

Aborted

after the transaction has been rolled back and the database restored to
its state prior to the start of the transaction.

Two options after it has been aborted:

restart the transaction

can be done only if no internal logical error

kill the transaction

MDA104, Vlastislav Dohnal, FI MUNI, 2024 8

MDA104, Vlastislav Dohnal, FI MUNI, 2024 9

Concurrent Executions

Multiple transactions are allowed to run concurrently in the system.

Advantages are:

increased processor and disk utilization, leading to better

transaction throughput

E.g. one transaction can be using the CPU while another is

reading from or writing to the disk

reduced average response time for transactions

E.g. short transactions need not wait behind long ones.

Concurrency control schemes – mechanisms to achieve isolation

that is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the

consistency of the database

Analysis of conflicting operations

Locking – of records, tables

MDA104, Vlastislav Dohnal, FI MUNI, 2024 10

Schedules

Schedule – a sequence of instructions that specify the chronological

order in which instructions of concurrent transactions are executed

a schedule for a set of transactions must consist of all instructions

of those transactions

must preserve the order in which the instructions appear in each

individual transaction

A transaction that successfully completes its execution

will have a commit instruction as the last statement

by default, transaction assumed to execute commit instruction as

its last step

A transaction that fails to complete its execution

will have an abort instruction as the last statement (rollback command)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 11

Schedule 1

Let T1 transfer $50 from A to B, and

T2 transfer 10% of the balance from A to B.

A serial schedule in which

T1 is followed by T2:

MDA104, Vlastislav Dohnal, FI MUNI, 2024 12

Schedule 2

A serial schedule where T2 is followed by T1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 13

Schedule 3
Let T1 and T2 be the transactions defined previously.

The following schedule is not
a serial schedule

but it is equivalent to
Schedule 1 (serial schedule).

In Schedules 1, 2 and 3,
the sum A + B is preserved.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 14

Schedule 4

The following concurrent schedule does not preserve the value of

(A + B).

These changes to A

will be discarded by

write(A) in T1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 15

Serializability

Basic Assumption: each transaction preserves database

consistency.

Thus serial execution of a set of transactions preserves database

consistency.

A (possibly concurrent) schedule is serializable if it is equivalent to a

serial schedule.

Different forms of schedule equivalence give rise to the notions of:

1. conflict serializability

2. view serializability

MDA104, Vlastislav Dohnal, FI MUNI, 2024 16

Simplified view of transactions

We ignore operations other than read and write instructions

We assume that transactions may perform arbitrary computations on

data in local buffers in between reads and writes.

Our simplified schedules consist of only read and write instructions.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 17

Conflicting Instructions

Instructions li and lj of transactions Ti and Tj respectively, conflict if

and only if there exists some item Q accessed by both li and lj, and at

least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

Intuitively, a conflict between li and lj forces a (logical) temporal order

between them.

If li and lj are consecutive in a schedule and they do not conflict,

their results would remain the same even if they had been

interchanged in the schedule.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 18

Conflict Serializability

If a schedule S can be transformed into a schedule S´ by a series of

swaps of non-conflicting instructions, we say that S and S´ are

conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict

equivalent to a serial schedule

MDA104, Vlastislav Dohnal, FI MUNI, 2024 19

Conflict Serializability (Cont.)

Schedule 3 can be transformed into Schedule 1, a serial

schedule where T2 follows T1, by a series of swaps of non-

conflicting instructions.

Therefore Schedule 3 is conflict serializable.

Schedule 3 Schedule 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 20

Conflict Serializability (Cont.)

Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above schedule to obtain

either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 27

Recoverable Schedules
Need to address the effect of transaction failures on concurrently

running transactions.

Recoverable schedule — if a transaction Tj reads a data item

previously written by a transaction Ti , then the commit operation of Ti

appears before the commit operation of Tj.

The following schedule (Schedule 11) is not recoverable if T9 commits

immediately after the read

Should T8 abort, T9 would have read (and possibly shown to the user)

an inconsistent database state!

Hence, database must ensure that schedules are recoverable.

abort

MDA104, Vlastislav Dohnal, FI MUNI, 2024 28

Cascading Rollbacks

Cascading rollback – a single transaction failure leads to a series of

transaction rollbacks.

Consider the following schedule where none of the transactions has

yet committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back

Can lead to the undoing of a significant amount of work

MDA104, Vlastislav Dohnal, FI MUNI, 2024 29

Cascadeless Schedules

Cascadeless schedules — cascading rollbacks cannot occur if

for each pair of transactions Ti and Tj such that Tj reads a data

item previously written by Ti, the commit operation of Ti appears

before the read operation of Tj.

Every cascadeless schedule is also recoverable

It is desirable to restrict the schedules to those that are cascadeless

MDA104, Vlastislav Dohnal, FI MUNI, 2024 30

Concurrency Control

A database must provide a mechanism that will ensure that all

possible schedules are

either conflict or view serializable, and

are recoverable and preferably cascadeless

A policy in which only one transaction can execute at a time generates

serial schedules, but provides a poor degree of concurrency

Are serial schedules recoverable/cascadeless?

Testing a schedule for serializability after it has executed is a little too

late!

Goal – to develop concurrency control protocols that will assure

serializability.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 33

Weak Levels of Consistency

Some applications are willing to live with weak levels of consistency,

allowing schedules that are not serializable and recoverable

E.g.

a read-only transaction that wants to get an approximate total

balance of all accounts

database statistics computed for query optimization can be

approximate

Such transactions need not be serializable with respect to other

transactions

Tradeoff accuracy for performance

MDA104, Vlastislav Dohnal, FI MUNI, 2024 34

Levels of Consistency in SQL-92

Consistency levels (from highest to lowest):

Serializable — default

Snapshot isolation — (not part of SQL-92) only committed records to be

read, reads must return the value present at the beginning of transaction;

better performance while retaining most of serializability.

Repeatable read — only committed records to be read, repeated reads of

same record must return same value.

However, a transaction may not be serializable:

it may find some new records inserted by a committed transaction.

Read committed — only committed records can be read, but successive

reads of record may return different (but committed) values.

Read uncommitted — even uncommitted records may be read.

Lower degrees of consistency useful for gathering approximate information

about the database

Warning: some database systems do not ensure serializable schedules by

default

Levels of Consistency

Snapshot isolation does not mean serializable!

Example:

One transaction turns each of the white marbles into black marbles.

The second transaction turns each of the black marbles into white marbles.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 35

MDA104, Vlastislav Dohnal, FI MUNI, 2024 36

Transaction Definition in SQL

Data manipulation language must include a construct for specifying the

set of actions that comprise a transaction.

A transaction begins implicitly.

Some systems may use begin to start a new transaction

A transaction ends by:

Commit: commits current transaction and begins a new one.

Rollback: causes current transaction to abort.

Often, SQL statement also commits implicitly if it executes successfully

Mainly when libraries are used to access database.

Implicit commit can be turned off

E.g. in JDBC, connection.setAutoCommit(false);

Summary – Takeaways

Definition of transaction

ACID properties

Simultaneous execution of transactions

schedule

serializability of schedules

levels of transaction isolation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 37

	Snímek 1: MDA104 Introduction to Databases 6. Transactions
	Snímek 2: Transactions
	Snímek 3: Transaction Concept
	Snímek 4: Example of Fund Transfer
	Snímek 5: Example of Fund Transfer (Cont.)
	Snímek 6: Example of Fund Transfer (Cont.)
	Snímek 7: ACID Properties
	Snímek 8: Transaction State
	Snímek 9: Concurrent Executions
	Snímek 10: Schedules
	Snímek 11: Schedule 1
	Snímek 12: Schedule 2
	Snímek 13: Schedule 3
	Snímek 14: Schedule 4
	Snímek 15: Serializability
	Snímek 16: Simplified view of transactions
	Snímek 17: Conflicting Instructions
	Snímek 18: Conflict Serializability
	Snímek 19: Conflict Serializability (Cont.)
	Snímek 20: Conflict Serializability (Cont.)
	Snímek 27: Recoverable Schedules
	Snímek 28: Cascading Rollbacks
	Snímek 29: Cascadeless Schedules
	Snímek 30: Concurrency Control
	Snímek 33: Weak Levels of Consistency
	Snímek 34: Levels of Consistency in SQL-92
	Snímek 35: Levels of Consistency
	Snímek 36: Transaction Definition in SQL
	Snímek 37: Summary – Takeaways

