
MDA104 Introduction to Databases

6. Analytical SQL

Vlastislav Dohnal

Contents

◼ Recursive queries

◼ Ranking functions

◼ Windowing functions

◼ OLAP

MDA104, Vlastislav Dohnal, FI MUNI, 2024 2

Recursion in SQL

◼ SQL:1999 permits recursive view definition

◼ Example: find which courses are a prerequisite, whether directly or indirectly,
for a specific course
with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;

This example view, rec_prereq, is called the transitive closure of the prereq
relation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 3

The Power of Recursion

◼ Recursive views make it possible to write queries, such as

transitive closure queries, that cannot be written without recursion

or iteration.

 Intuition: Without recursion, a non-recursive non-iterative program can

perform only a fixed number of joins of prereq with itself

◼ This can give only a fixed number of levels of managers

◼ Given a fixed non-recursive query, we can construct a database with a greater

number of levels of prerequisites on which the query will not work

◼ Alternative: write a procedure to iterate as many times as required

 See procedure findAllPrereqs in the book (Database Systems Concepts)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 4

Example of Fixed-Point Computation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 6

with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id

from prereq

union

select rec_prereq.course_id, prereq.prereq_id,

from rec_rereq, prereq

where rec_prereq.prereq_id = prereq.course_id

)

select ∗
from rec_prereq;

Advanced Aggregate Functions

◼ General functions
 min, max, count, sum, avg

 array_agg(expression)
◼ packs all input values into one array

◼ Statistical functions
 stddev_samp(expression)

◼ calculates the (sample) standard deviation over the values

 var_samp(expression)
◼ calculates the (sample) variance over the values

 corr(a,b)
◼ correlation coefficient between the two sets of values

 regr_slope(y,x)
◼ slope of the least-squares-fit linear function determined by the (x, y) pairs

 regr_intercept(y, x)
◼ y-intercept of the least-squares-fit linear equation determined by the (x, y) pairs

MDA104, Vlastislav Dohnal, FI MUNI, 2024 7

Advanced Aggregate Functions

◼ (Inverse) Distribution functions

 mode() WITHIN GROUP (ORDER BY expression)

◼ returns the most frequent input value

 choosing the first one arbitrarily if there are multiple equally-frequent results

 percentile_cont(fraction) WITHIN GROUP (ORDER BY expression)

◼ continuous percentile: returns a value corresponding to the specified fraction in the

ordering,

◼ interpolating between adjacent input items if needed

 percentile_disc(fraction) WITHIN GROUP (ORDER BY expression)

◼ discrete percentile: returns the first input value whose position in the ordering equals

or exceeds the specified fraction

MDA104, Vlastislav Dohnal, FI MUNI, 2024 8

fraction <0;1>

Advanced Aggregate Functions

◼ Hypothetical-set functions

 rank(value) WITHIN GROUP (ORDER BY expr)

◼ rank of the hypothetical value, with gaps for duplicate rows, over all values of expr.

 dense_rank(value) WITHIN GROUP (ORDER BY expr)

◼ rank of the hypothetical value, without gaps

 percent_rank(value) WITHIN GROUP (ORDER BY expr)

◼ relative rank of the hypothetical value, ranging from 0 to 1

 cume_dist(value) WITHIN GROUP (ORDER BY expr)

◼ relative rank of the hypothetical value, ranging from 1/N to 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 9

Analytic Functions

◼ provide the ability to perform calculations across sets of rows that are
related to the current query row

◼ generally called Window functions

◼ <aggregate function>
OVER ([PARTITION BY <column list>]

ORDER BY <sort column list>
[<aggregation grouping>])

◼ E.g.,
SELECT … ,

AVG(sales) OVER (PARTITION BY region
ORDER BY month ASC ROWS 2 PRECEDING), …

FROM …
 moving/rolling average over 3 rows

MDA104, Vlastislav Dohnal, FI MUNI, 2024 10

Analytic Functions

◼ Ranking operators

 Row numbering is the most basic ranking function

◼ E.g.,

SELECT SalesOrderID , CustomerID ,

ROW_NUMBER() OVER (ORDER BY SalesOrderID)

as RunningCount

FROM Sales WHERE SalesOrderID > 10000

ORDER BY SalesOrderID

MDA104, Vlastislav Dohnal, FI MUNI, 2024 11

Analytic Functions

◼ ROW_NUMBER does not consider tied values

 Each 2 equal values get 2 different row numbers

 The behavior is nondeterministic

◼ Each tied value could have its number switched!

◼ We need something deterministic

 RANK() and DENSE_RANK()

MDA104, Vlastislav Dohnal, FI MUNI, 2024 12

Analytic Functions

◼ RANK and DENSE_RANK functions

 Allow ranking items in a group

 Syntax:

◼ RANK () OVER ([query_partition_clause] order_by_clause)

◼ DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

 DENSE_RANK

◼ leaves no gaps in ranking sequence when there are ties

 PERCENT_RANK → (rank - 1) / (total rows - 1)

 CUME_DIST - the cumulative distribution

◼ the number of partition rows preceding (or peers with) the current row / total partition

rows

◼ The value ranges from 1/N to 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 13

Analytic Functions

◼ Example

SELECT channel, calendar,

TO_CHAR(TRUNC(SUM(amount_sold), -6), '9,999,999’) AS sales,

RANK() OVER (ORDER BY TRUNC(amount_sold, -6)) DESC) AS rank,

DENSE_RANK() OVER (ORDER BY TRUNC(SUM(amount_sold), -6)) DESC) AS dense_rank

FROM sales, products

… GROUP BY channel, calendar ORDER BY sales DESC

MDA104, Vlastislav Dohnal, FI MUNI, 2024 14

Analytic Functions

◼ Group ranking - RANK function can operate within groups: the

rank gets reset whenever the group changes

 A single query can contain more than one ranking function, each

partitioning the data into different groups.

 PARTITION BY clause

MDA104, Vlastislav Dohnal, FI MUNI, 2024 15

SELECT … RANK() OVER (PARTITION BY channel ORDER BY SUM(amount_sold) DESC) AS rank_by_channel

Analytic Functions

◼ NTILE splits a set into equal-sized groups
 It divides an ordered partition into buckets and assigns a bucket number

to each row in the partition

 Buckets are calculated so that each bucket has exactly the same number
of rows assigned to it or at most 1 row more than the others

 NTILE(4) - quartile

 NTILE(100) - percentage

◼ Not a part of the SQL99 standard, but adopted by major vendors

MDA104, Vlastislav Dohnal, FI MUNI, 2024 16

SELECT … NTILE(3) OVER (ORDER BY sales) NT_3 FROM …

More on Ranking…

◼ Ranking can be done using basic SQL aggregation, but resultant

query is very inefficient

select ID, (1 + (select count(*)

from student_grades B

where B.GPA > A.GPA)) as s_rank

from student_grades A

order by s_rank;

▪ More efficient solution with advanced SQL:

select ID, rank() over (order by GPA desc) as s_rank

from student_grades

MDA104, Vlastislav Dohnal, FI MUNI, 2024 17

Windowing

▪ Used to smooth out random variations.

▪ E.g., moving average: “Given sales values for each date, calculate
for each date the average of the sales on that day, the previous day,
and the next day”

▪ Window specification in SQL:
• Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 18

Windowing

▪ Examples of other window specifications:
• between rows unbounded preceding and current

• rows unbounded preceding

• range between 10 preceding and current row
▪ All rows with values between current row value –10 to current value

• range interval 10 day preceding
▪ Not including current row

MDA104, Vlastislav Dohnal, FI MUNI, 2024 19

Windowing (Cont.)

▪ Can do windowing within partitions

▪ E.g., Given a relation transaction (account_number, date_time,

value), where value is positive for a deposit and negative for a

withdrawal

• “Find total balance of each account after each transaction on the account”

select account_number, date_time,

sum (value) over

(partition by account_number

order by date_time

rows unbounded preceding)

as balance

from transaction

order by account_number, date_time
MDA104, Vlastislav Dohnal, FI MUNI, 2024 20

Windowing (Cont.)

◼ Obtain a value of a particular row of a window frame defined by

window clause (PARTITION BY…)

 first_value(expression)

 last_value(expression)

 nth_value (expression)

SELECT … FIRST_VALUE(sales) OVER (ORDER BY sales) AS lowest_sale

CHANNEL CALENDAR SALES LOWEST_SALE

Direst sales 02.2016 10,000 4,000

Direst sales 03.2016 9,000 4,000

Internet 02.2016 6,000 4,000

Internet 03.2016 6,000 4,000

Partners 03.2016 4,000 4,000

SELECT … FIRST_VALUE(sales) OVER (PARTITION BY channel ORDER BY sales) AS lowest_sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 21

Windowing (Cont.)

◼ Access to a row that comes before the current row at a specified

physical offset with the current window frame (partition)

 LAG(expression [,offset [,default_value]])

◼ … after the current row

 LEAD(expression [,offset [,default_value]]

CHANNEL CALENDAR SALES PREV_SALE

Direst sales 02.2016 10,000 NULL

Direst sales 03.2016 9,000 10,000

Internet 02.2016 6,000 NULL

Internet 03.2016 6,000 6,000

Partners 03.2016 4,000 NULL

SELECT … LAG(sales, 1) OVER (PARTITION BY channel ORDER BY calendar) AS prev_sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 22

Data Aggregations

◼ Used in GROUP BY clause instead of mere list of attributes

◼ ROLLUP (e1, e2, e3, …)
 represents the given list of expressions and all prefixes of the list including the

empty list

◼ CUBE (e1, e2, e3, …)
 represents the given list and all of its possible subsets (i.e., the power set)

◼ GROUPING SETS ((e1,e2), (e4,e5), (e6), () …)
 rows are grouped separately by each specified grouping set

◼ Function to obtain which “GROUP BY” takes place
 GROUPING(args...)

◼ Integer bit mask indicating which arguments are not being included in the current
grouping set

MDA104, Vlastislav Dohnal, FI MUNI, 2024 23

Data Aggregations

◼ Pivoting table for make and model over sales data

 SELECT make, model, sum(amount) FROM sales

GROUP BY CUBE (make, model)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 24

Data Aggregations

◼ Example of CUBE on table of car sales (year, make, model, amount)

 GROUP BY CUBE (year, make, model) calculates:

MDA104, Vlastislav Dohnal, FI MUNI, 2024 25

Example sales relation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 26

Cross Tabulation of sales by item_name and color

▪ The table above is an example of a cross-tabulation (cross-

tab), also referred to as a pivot-table.

• Values for one of the dimension attributes form the row headers

• Values for another dimension attribute form the column headers

• Other dimension attributes are listed on top

• Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.
MDA104, Vlastislav Dohnal, FI MUNI, 2024 27

Data Cube

▪ A data cube is a multidimensional generalization of a cross-tab

▪ Can have n dimensions; we show 3 below

▪ Cross-tabs can be used as views on a data cube

MDA104, Vlastislav Dohnal, FI MUNI, 2024 28

Cross Tabulation With Hierarchy

◼ Cross-tabs can be easily extended to deal with hierarchies

 Can drill down or roll up on a hierarchy

MDA104, Vlastislav Dohnal, FI MUNI, 2024 30

Relational Representation of Cross-tabs

◼ Cross-tabs can be represented as

relations

 We use the value all is used to

represent aggregates.

 The SQL standard actually uses null

values in place of all despite confusion

with regular null values.

◼ The function grouping() can be applied on

an attribute

 Returns 1 if the value is a null value

representing all, and returns 0 in all other

cases.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 31

Relational Representation of Cross-tabs (cont.)

▪ Can use the function decode() in the select clause to replace
such nulls by a value such as all

• E.g., replace item_name in the query by

decode(grouping(item_name), 1, ‘all’, item_name)

◼ By analogy for color and clothes_size

 In PostgreSQL, CASE WHEN … THEN … ELSE … END must be used.

 E.g., replace item_name in the query by
case when grouping(item_name) = 1 then ‘all’ else item_name end

as item_name

MDA104, Vlastislav Dohnal, FI MUNI, 2024 32

Extended Aggregation
▪ The cube operation computes union of group by’s on every subset of the specified

attributes

▪ Example relation for this section
sales(item_name, color, clothes_size, quantity)

▪ E.g., consider the query

select item_name, color, size, sum(number)
from sales
group by cube(item_name, color, size)

This computes the union of eight different groupings of the sales relation:

{ (item_name, color, size), (item_name, color),
(item_name, size), (color, size),
(item_name), (color),
(size), () }

where () denotes an empty group by list.

▪ For each grouping, the result contains the null value
for attributes not present in the grouping.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 33

Extended Aggregation (Cont.)
▪ The rollup construct generates union on every prefix of specified list of

attributes
▪ E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name, color, size)

• Generates union of four groupings:

{ (item_name, color, size), (item_name, color), (item_name), () }
▪ Rollup can be used to generate aggregates at multiple levels of a

hierarchy.
▪ E.g., suppose table itemcategory(item_name, category) gives the category of

each item. Then
select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)

would give a hierarchical summary by item_name and by category.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 34

Extended Aggregation (Cont.)

▪ Multiple rollups and cubes can be used in a single group by clause

• Each generates set of group by lists, cross product of sets gives overall set of

group by lists

▪ E.g.,

select item_name, color, size, sum(number)

from sales

group by rollup(item_name), rollup(color, size)

generates the groupings

{item_name, ()} X {(color, size), (color), ()}

= { (item_name, color, size), (item_name, color), (item_name),

(color, size), (color), () }

MDA104, Vlastislav Dohnal, FI MUNI, 2024 35

Data Analysis and OLAP

▪ Online Analytical Processing (OLAP)

• Interactive analysis of data, allowing data to be summarized and viewed in

different ways in an online fashion (with negligible delay)

▪ Data that can be modeled as dimension attributes and measure

attributes, are called multidimensional data.

• Measure attributes

▪ measure some value

▪ can be aggregated upon

▪ e.g., the attribute number of the sales relation

• Dimension attributes

▪ define the dimensions on which measure attributes (or aggregates thereof) are

viewed

▪ e.g., attributes item_name, color, and size of the sales relation
MDA104, Vlastislav Dohnal, FI MUNI, 2024 36

Types of analytical queries in OLAP

▪ Pivoting: changing the dimensions used in a cross-tab is called

▪ Slicing: creating a cross-tab for fixed values only

• Sometimes called dicing, particularly when values for multiple dimensions

are fixed.

▪ Rollup: moving from finer-granularity data to a coarser granularity

▪ Drill down: The opposite operation - that of moving from coarser-

granularity data to finer-granularity data

MDA104, Vlastislav Dohnal, FI MUNI, 2024 37

Takeaways

◼ Single SELECT command can inspect table rows “multiple” times

 in recursive queries, windowing functions

 but much faster than multiple specific SELECTs

◼ Statistical functions

 variance, deviation, percentile, median

 sliding statistics using windowing functions

◼ OLAP as a concept

MDA104, Vlastislav Dohnal, FI MUNI, 2024 38

	Snímek 1: MDA104 Introduction to Databases 6. Analytical SQL
	Snímek 2: Contents
	Snímek 3: Recursion in SQL
	Snímek 4: The Power of Recursion
	Snímek 6: Example of Fixed-Point Computation
	Snímek 7: Advanced Aggregate Functions
	Snímek 8: Advanced Aggregate Functions
	Snímek 9: Advanced Aggregate Functions
	Snímek 10: Analytic Functions
	Snímek 11: Analytic Functions
	Snímek 12: Analytic Functions
	Snímek 13: Analytic Functions
	Snímek 14: Analytic Functions
	Snímek 15: Analytic Functions
	Snímek 16: Analytic Functions
	Snímek 17: More on Ranking…
	Snímek 18: Windowing
	Snímek 19: Windowing
	Snímek 20: Windowing (Cont.)
	Snímek 21: Windowing (Cont.)
	Snímek 22: Windowing (Cont.)
	Snímek 23: Data Aggregations
	Snímek 24: Data Aggregations
	Snímek 25: Data Aggregations
	Snímek 26: Example sales relation
	Snímek 27: Cross Tabulation of sales by item_name and color
	Snímek 28: Data Cube
	Snímek 30: Cross Tabulation With Hierarchy
	Snímek 31: Relational Representation of Cross-tabs
	Snímek 32: Relational Representation of Cross-tabs (cont.)
	Snímek 33: Extended Aggregation
	Snímek 34: Extended Aggregation (Cont.)
	Snímek 35: Extended Aggregation (Cont.)
	Snímek 36: Data Analysis and OLAP
	Snímek 37: Types of analytical queries in OLAP
	Snímek 38: Takeaways

