
MDA104 Introduction to Databases

6. Analytical SQL

Vlastislav Dohnal

Contents

◼ Recursive queries

◼ Ranking functions

◼ Windowing functions

◼ OLAP

MDA104, Vlastislav Dohnal, FI MUNI, 2024 2

Recursion in SQL

◼ SQL:1999 permits recursive view definition

◼ Example: find which courses are a prerequisite, whether directly or indirectly,
for a specific course
with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;

This example view, rec_prereq, is called the transitive closure of the prereq
relation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 3

The Power of Recursion

◼ Recursive views make it possible to write queries, such as

transitive closure queries, that cannot be written without recursion

or iteration.

 Intuition: Without recursion, a non-recursive non-iterative program can

perform only a fixed number of joins of prereq with itself

◼ This can give only a fixed number of levels of managers

◼ Given a fixed non-recursive query, we can construct a database with a greater

number of levels of prerequisites on which the query will not work

◼ Alternative: write a procedure to iterate as many times as required

 See procedure findAllPrereqs in the book (Database Systems Concepts)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 4

Example of Fixed-Point Computation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 6

with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id

from prereq

union

select rec_prereq.course_id, prereq.prereq_id,

from rec_rereq, prereq

where rec_prereq.prereq_id = prereq.course_id

)

select ∗
from rec_prereq;

Advanced Aggregate Functions

◼ General functions
 min, max, count, sum, avg

 array_agg(expression)
◼ packs all input values into one array

◼ Statistical functions
 stddev_samp(expression)

◼ calculates the (sample) standard deviation over the values

 var_samp(expression)
◼ calculates the (sample) variance over the values

 corr(a,b)
◼ correlation coefficient between the two sets of values

 regr_slope(y,x)
◼ slope of the least-squares-fit linear function determined by the (x, y) pairs

 regr_intercept(y, x)
◼ y-intercept of the least-squares-fit linear equation determined by the (x, y) pairs

MDA104, Vlastislav Dohnal, FI MUNI, 2024 7

Advanced Aggregate Functions

◼ (Inverse) Distribution functions

 mode() WITHIN GROUP (ORDER BY expression)

◼ returns the most frequent input value

 choosing the first one arbitrarily if there are multiple equally-frequent results

 percentile_cont(fraction) WITHIN GROUP (ORDER BY expression)

◼ continuous percentile: returns a value corresponding to the specified fraction in the

ordering,

◼ interpolating between adjacent input items if needed

 percentile_disc(fraction) WITHIN GROUP (ORDER BY expression)

◼ discrete percentile: returns the first input value whose position in the ordering equals

or exceeds the specified fraction

MDA104, Vlastislav Dohnal, FI MUNI, 2024 8

fraction  <0;1>

Advanced Aggregate Functions

◼ Hypothetical-set functions

 rank(value) WITHIN GROUP (ORDER BY expr)

◼ rank of the hypothetical value, with gaps for duplicate rows, over all values of expr.

 dense_rank(value) WITHIN GROUP (ORDER BY expr)

◼ rank of the hypothetical value, without gaps

 percent_rank(value) WITHIN GROUP (ORDER BY expr)

◼ relative rank of the hypothetical value, ranging from 0 to 1

 cume_dist(value) WITHIN GROUP (ORDER BY expr)

◼ relative rank of the hypothetical value, ranging from 1/N to 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 9

Analytic Functions

◼ provide the ability to perform calculations across sets of rows that are
related to the current query row

◼ generally called Window functions

◼ <aggregate function>
OVER ([PARTITION BY <column list>]

ORDER BY <sort column list>
[<aggregation grouping>])

◼ E.g.,
SELECT … ,

AVG(sales) OVER (PARTITION BY region
ORDER BY month ASC ROWS 2 PRECEDING), …

FROM …
 moving/rolling average over 3 rows

MDA104, Vlastislav Dohnal, FI MUNI, 2024 10

Analytic Functions

◼ Ranking operators

 Row numbering is the most basic ranking function

◼ E.g.,

SELECT SalesOrderID , CustomerID ,

ROW_NUMBER() OVER (ORDER BY SalesOrderID)

as RunningCount

FROM Sales WHERE SalesOrderID > 10000

ORDER BY SalesOrderID

MDA104, Vlastislav Dohnal, FI MUNI, 2024 11

Analytic Functions

◼ ROW_NUMBER does not consider tied values

 Each 2 equal values get 2 different row numbers

 The behavior is nondeterministic

◼ Each tied value could have its number switched!

◼ We need something deterministic

 RANK() and DENSE_RANK()

MDA104, Vlastislav Dohnal, FI MUNI, 2024 12

Analytic Functions

◼ RANK and DENSE_RANK functions

 Allow ranking items in a group

 Syntax:

◼ RANK () OVER ([query_partition_clause] order_by_clause)

◼ DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

 DENSE_RANK

◼ leaves no gaps in ranking sequence when there are ties

 PERCENT_RANK → (rank - 1) / (total rows - 1)

 CUME_DIST - the cumulative distribution

◼ the number of partition rows preceding (or peers with) the current row / total partition

rows

◼ The value ranges from 1/N to 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 13

Analytic Functions

◼ Example

SELECT channel, calendar,

TO_CHAR(TRUNC(SUM(amount_sold), -6), '9,999,999’) AS sales,

RANK() OVER (ORDER BY TRUNC(amount_sold, -6)) DESC) AS rank,

DENSE_RANK() OVER (ORDER BY TRUNC(SUM(amount_sold), -6)) DESC) AS dense_rank

FROM sales, products

… GROUP BY channel, calendar ORDER BY sales DESC

MDA104, Vlastislav Dohnal, FI MUNI, 2024 14

Analytic Functions

◼ Group ranking - RANK function can operate within groups: the

rank gets reset whenever the group changes

 A single query can contain more than one ranking function, each

partitioning the data into different groups.

 PARTITION BY clause

MDA104, Vlastislav Dohnal, FI MUNI, 2024 15

SELECT … RANK() OVER (PARTITION BY channel ORDER BY SUM(amount_sold) DESC) AS rank_by_channel

Analytic Functions

◼ NTILE splits a set into equal-sized groups
 It divides an ordered partition into buckets and assigns a bucket number

to each row in the partition

 Buckets are calculated so that each bucket has exactly the same number
of rows assigned to it or at most 1 row more than the others

 NTILE(4) - quartile

 NTILE(100) - percentage

◼ Not a part of the SQL99 standard, but adopted by major vendors

MDA104, Vlastislav Dohnal, FI MUNI, 2024 16

SELECT … NTILE(3) OVER (ORDER BY sales) NT_3 FROM …

More on Ranking…

◼ Ranking can be done using basic SQL aggregation, but resultant

query is very inefficient

select ID, (1 + (select count(*)

from student_grades B

where B.GPA > A.GPA)) as s_rank

from student_grades A

order by s_rank;

▪ More efficient solution with advanced SQL:

select ID, rank() over (order by GPA desc) as s_rank

from student_grades

MDA104, Vlastislav Dohnal, FI MUNI, 2024 17

Windowing

▪ Used to smooth out random variations.

▪ E.g., moving average: “Given sales values for each date, calculate
for each date the average of the sales on that day, the previous day,
and the next day”

▪ Window specification in SQL:
• Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 18

Windowing

▪ Examples of other window specifications:
• between rows unbounded preceding and current

• rows unbounded preceding

• range between 10 preceding and current row
▪ All rows with values between current row value –10 to current value

• range interval 10 day preceding
▪ Not including current row

MDA104, Vlastislav Dohnal, FI MUNI, 2024 19

Windowing (Cont.)

▪ Can do windowing within partitions

▪ E.g., Given a relation transaction (account_number, date_time,

value), where value is positive for a deposit and negative for a

withdrawal

• “Find total balance of each account after each transaction on the account”

select account_number, date_time,

sum (value) over

(partition by account_number

order by date_time

rows unbounded preceding)

as balance

from transaction

order by account_number, date_time
MDA104, Vlastislav Dohnal, FI MUNI, 2024 20

Windowing (Cont.)

◼ Obtain a value of a particular row of a window frame defined by

window clause (PARTITION BY…)

 first_value(expression)

 last_value(expression)

 nth_value (expression)

SELECT … FIRST_VALUE(sales) OVER (ORDER BY sales) AS lowest_sale

CHANNEL CALENDAR SALES LOWEST_SALE

Direst sales 02.2016 10,000 4,000

Direst sales 03.2016 9,000 4,000

Internet 02.2016 6,000 4,000

Internet 03.2016 6,000 4,000

Partners 03.2016 4,000 4,000

SELECT … FIRST_VALUE(sales) OVER (PARTITION BY channel ORDER BY sales) AS lowest_sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 21

Windowing (Cont.)

◼ Access to a row that comes before the current row at a specified

physical offset with the current window frame (partition)

 LAG(expression [,offset [,default_value]])

◼ … after the current row

 LEAD(expression [,offset [,default_value]]

CHANNEL CALENDAR SALES PREV_SALE

Direst sales 02.2016 10,000 NULL

Direst sales 03.2016 9,000 10,000

Internet 02.2016 6,000 NULL

Internet 03.2016 6,000 6,000

Partners 03.2016 4,000 NULL

SELECT … LAG(sales, 1) OVER (PARTITION BY channel ORDER BY calendar) AS prev_sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 22

Data Aggregations

◼ Used in GROUP BY clause instead of mere list of attributes

◼ ROLLUP (e1, e2, e3, …)
 represents the given list of expressions and all prefixes of the list including the

empty list

◼ CUBE (e1, e2, e3, …)
 represents the given list and all of its possible subsets (i.e., the power set)

◼ GROUPING SETS ((e1,e2), (e4,e5), (e6), () …)
 rows are grouped separately by each specified grouping set

◼ Function to obtain which “GROUP BY” takes place
 GROUPING(args...)

◼ Integer bit mask indicating which arguments are not being included in the current
grouping set

MDA104, Vlastislav Dohnal, FI MUNI, 2024 23

Data Aggregations

◼ Pivoting table for make and model over sales data

 SELECT make, model, sum(amount) FROM sales

GROUP BY CUBE (make, model)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 24

Data Aggregations

◼ Example of CUBE on table of car sales (year, make, model, amount)

 GROUP BY CUBE (year, make, model) calculates:

MDA104, Vlastislav Dohnal, FI MUNI, 2024 25

Example sales relation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 26

Cross Tabulation of sales by item_name and color

▪ The table above is an example of a cross-tabulation (cross-

tab), also referred to as a pivot-table.

• Values for one of the dimension attributes form the row headers

• Values for another dimension attribute form the column headers

• Other dimension attributes are listed on top

• Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.
MDA104, Vlastislav Dohnal, FI MUNI, 2024 27

Data Cube

▪ A data cube is a multidimensional generalization of a cross-tab

▪ Can have n dimensions; we show 3 below

▪ Cross-tabs can be used as views on a data cube

MDA104, Vlastislav Dohnal, FI MUNI, 2024 28

Cross Tabulation With Hierarchy

◼ Cross-tabs can be easily extended to deal with hierarchies

 Can drill down or roll up on a hierarchy

MDA104, Vlastislav Dohnal, FI MUNI, 2024 30

Relational Representation of Cross-tabs

◼ Cross-tabs can be represented as

relations

 We use the value all is used to

represent aggregates.

 The SQL standard actually uses null

values in place of all despite confusion

with regular null values.

◼ The function grouping() can be applied on

an attribute

 Returns 1 if the value is a null value

representing all, and returns 0 in all other

cases.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 31

Relational Representation of Cross-tabs (cont.)

▪ Can use the function decode() in the select clause to replace
such nulls by a value such as all

• E.g., replace item_name in the query by

decode(grouping(item_name), 1, ‘all’, item_name)

◼ By analogy for color and clothes_size

 In PostgreSQL, CASE WHEN … THEN … ELSE … END must be used.

 E.g., replace item_name in the query by
case when grouping(item_name) = 1 then ‘all’ else item_name end

as item_name

MDA104, Vlastislav Dohnal, FI MUNI, 2024 32

Extended Aggregation
▪ The cube operation computes union of group by’s on every subset of the specified

attributes

▪ Example relation for this section
sales(item_name, color, clothes_size, quantity)

▪ E.g., consider the query

select item_name, color, size, sum(number)
from sales
group by cube(item_name, color, size)

This computes the union of eight different groupings of the sales relation:

{ (item_name, color, size), (item_name, color),
(item_name, size), (color, size),
(item_name), (color),
(size), () }

where () denotes an empty group by list.

▪ For each grouping, the result contains the null value
for attributes not present in the grouping.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 33

Extended Aggregation (Cont.)
▪ The rollup construct generates union on every prefix of specified list of

attributes
▪ E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name, color, size)

• Generates union of four groupings:

{ (item_name, color, size), (item_name, color), (item_name), () }
▪ Rollup can be used to generate aggregates at multiple levels of a

hierarchy.
▪ E.g., suppose table itemcategory(item_name, category) gives the category of

each item. Then
select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)

would give a hierarchical summary by item_name and by category.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 34

Extended Aggregation (Cont.)

▪ Multiple rollups and cubes can be used in a single group by clause

• Each generates set of group by lists, cross product of sets gives overall set of

group by lists

▪ E.g.,

select item_name, color, size, sum(number)

from sales

group by rollup(item_name), rollup(color, size)

generates the groupings

{item_name, ()} X {(color, size), (color), ()}

= { (item_name, color, size), (item_name, color), (item_name),

(color, size), (color), () }

MDA104, Vlastislav Dohnal, FI MUNI, 2024 35

Data Analysis and OLAP

▪ Online Analytical Processing (OLAP)

• Interactive analysis of data, allowing data to be summarized and viewed in

different ways in an online fashion (with negligible delay)

▪ Data that can be modeled as dimension attributes and measure

attributes, are called multidimensional data.

• Measure attributes

▪ measure some value

▪ can be aggregated upon

▪ e.g., the attribute number of the sales relation

• Dimension attributes

▪ define the dimensions on which measure attributes (or aggregates thereof) are

viewed

▪ e.g., attributes item_name, color, and size of the sales relation
MDA104, Vlastislav Dohnal, FI MUNI, 2024 36

Types of analytical queries in OLAP

▪ Pivoting: changing the dimensions used in a cross-tab is called

▪ Slicing: creating a cross-tab for fixed values only

• Sometimes called dicing, particularly when values for multiple dimensions

are fixed.

▪ Rollup: moving from finer-granularity data to a coarser granularity

▪ Drill down: The opposite operation - that of moving from coarser-

granularity data to finer-granularity data

MDA104, Vlastislav Dohnal, FI MUNI, 2024 37

Takeaways

◼ Single SELECT command can inspect table rows “multiple” times

 in recursive queries, windowing functions

 but much faster than multiple specific SELECTs

◼ Statistical functions

 variance, deviation, percentile, median

 sliding statistics using windowing functions

◼ OLAP as a concept

MDA104, Vlastislav Dohnal, FI MUNI, 2024 38

	Snímek 1: MDA104 Introduction to Databases 6. Analytical SQL
	Snímek 2: Contents
	Snímek 3: Recursion in SQL
	Snímek 4: The Power of Recursion
	Snímek 6: Example of Fixed-Point Computation
	Snímek 7: Advanced Aggregate Functions
	Snímek 8: Advanced Aggregate Functions
	Snímek 9: Advanced Aggregate Functions
	Snímek 10: Analytic Functions
	Snímek 11: Analytic Functions
	Snímek 12: Analytic Functions
	Snímek 13: Analytic Functions
	Snímek 14: Analytic Functions
	Snímek 15: Analytic Functions
	Snímek 16: Analytic Functions
	Snímek 17: More on Ranking…
	Snímek 18: Windowing
	Snímek 19: Windowing
	Snímek 20: Windowing (Cont.)
	Snímek 21: Windowing (Cont.)
	Snímek 22: Windowing (Cont.)
	Snímek 23: Data Aggregations
	Snímek 24: Data Aggregations
	Snímek 25: Data Aggregations
	Snímek 26: Example sales relation
	Snímek 27: Cross Tabulation of sales by item_name and color
	Snímek 28: Data Cube
	Snímek 30: Cross Tabulation With Hierarchy
	Snímek 31: Relational Representation of Cross-tabs
	Snímek 32: Relational Representation of Cross-tabs (cont.)
	Snímek 33: Extended Aggregation
	Snímek 34: Extended Aggregation (Cont.)
	Snímek 35: Extended Aggregation (Cont.)
	Snímek 36: Data Analysis and OLAP
	Snímek 37: Types of analytical queries in OLAP
	Snímek 38: Takeaways

