MDA104 Introduction to Databases

6. Analytical SQL

Vlastislav Dohnal

W
Contents

m Recursive gueries

m Ranking functions
= \Windowing functions

m OLAP

MDA104, Vlastislav Dohnal, FI MUNI, 2024

Recursion in SQL

m SQL:1999 permits recursive view definition

m Example: find which courses are a prerequisite, whether directly or indirectly,
for a specific course
with recursive rec_prereq(course id, prereg_id) as (
select course_id, prereq_id
from prereq
union
select rec_prereg.course_id, prereqg.prereq_|Id,
from rec_rereq, prereq
\ where rec_prereqg.prereq_id = prereq.course_Iid
select *
from rec_prereq;

This example view, rec_prereq, is called the transitive closure of the prereq
relation

MDA104, Vlastislav Dohnal, FI MUNI, 2024

W
The Power of Recursion

m Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without recursion
or iteration.

Intuition: Without recursion, a non-recursive non-iterative program can
perform only a fixed number of joins of prereq with itself
m This can give only a fixed number of levels of managers

m Given a fixed non-recursive query, we can construct a database with a greater
number of levels of prerequisites on which the query will not work

= Alternative: write a procedure to iterate as many times as required
See procedure findAllPreregs in the book (Database Systems Concepts)

MDA104, Vlastislav Dohnal, FI MUNI, 2024

N
Example of Fixed-Point Computation

course _id | prereq id
BI(O-301 BIO-101
BIO-399 | BIO-101
CS-190 CS-101
CS-315 CS-190
CS-319 CS-101
CS-319 CS-315
CS-347 CS-319

with recursive rec_prereq(course _id, prered_id) as (
select course _id, prereq_id
from prereq

union

select rec_prereg.course_id, prereg.prereqg_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)

select *

from rec_prereq;

Iteration Number | Tuples in cl

0

1 (CS-319)

2 (CS-319), (CS-315), (CS-101)

3 (CS-319), (CS-315), (CS-101), (CS-190)
4 (CS-319), (CS-315), (CS-101), (CS-190)
5 done

MDA104, Vlastislav Dohnal, FI MUNI, 2024

6

Advanced Aggregate Functions

m General functions
min, max, count, sum, avg
array _agg(expression)
m packs all input values into one array
m Statistical functions

stddev_samp(expression)

m calculates the (sample) standard deviation over the values
var_samp(expression)

m calculates the (sample) variance over the values
corr(a,b)

m correlation coefficient between the two sets of values

regr_slope(y,x)

m slope of the least-squares-fit linear function determined by the (X, y) pairs
regr_intercept(y, x)

m y-intercept of the least-squares-fit linear equation determined by the (X, y) pairs

MDA104, Vlastislav Dohnal, FI MUNI, 2024

N
Advanced Aggregate Functions

m (Inverse) Distribution functions

mode() WITHIN GROUP (ORDER BY expression)

m returns the most frequent input value
choosing the first one arbitrarily if there are multiple equally-frequent results

percentile _cont(fraction) WITHIN GROUP (ORDER BY expression)

m continuous percentile: returns a value corresponding to the specified fraction in the
ordering,

m interpolating between adjacent input items if needed

percentile_disc(fraction) WITHIN GROUP (ORDER BY expression)

m discrete percentile: returns the first input value whose position in the ordering equals
or exceeds the specified fraction

fraction € <0:1>

MDA104, Vlastislav Dohnal, FI MUNI, 2024

N
Advanced Aggregate Functions

m Hypothetical-set functions

rank(value) WITHIN GROUP (ORDER BY expr)
m rank of the hypothetical value, with gaps for duplicate rows, over all values of expr.

dense_rank(value) WITHIN GROUP (ORDER BY expr)
m rank of the hypothetical value, without gaps

percent_rank(value) WITHIN GROUP (ORDER BY expr)
m relative rank of the hypothetical value, ranging from O to 1

cume_dist(value) WITHIN GROUP (ORDER BY expr)
m relative rank of the hypothetical value, ranging from 1/Nto 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024

Analytic Functions
m provide the ability to perform calculations across sets of rows that are

related to the current query row
m generally called Window functions

m <aggregate function>
OVER ([PARTITION BY <column list>]
ORDER BY <sort column list>
[<aggregation grouping>])

m E.0.,
SELECT ...,
AV(G(sales) OVER (PARTITION BY region
ORDER BY month ASC ROWS 2 PRECEDING), ...
FROM ...

moving/rolling average over 3 rows

MDA104, Vlastislav Dohnal, FI MUNI, 2024

10

N
Analytic Functions

m Ranking operators

Row numbering is the most basic ranking function

s E.0,
SELECT SalesOrderID , CustomerID ,
ROW_NUMBER() OVER (ORDER BY SalesOrderID)
as RunningCount
FROM Sales WHERE SalesOrderID > 10000

ORDER BY SalesOrderID

43659 543 1
43660 234 2
43661 143 3
43662 213 4
43663 312 5

MDA104, Vlastislav Dohnal, FI MUNI, 2024

N
Analytic Functions

m ROW_NUMBER does not consider tied values
Each 2 equal values get 2 different row numbers

43659

[43659]
43660
43661

A W IN R

The behavior Is nondeterministic
m Each tied value could have its number switched!

m \We need something deterministic
RANK() and DENSE_RANK()

MDA104, Vlastislav Dohnal, FI MUNI, 2024

[
Analytic Functions

m RANK and DENSE_RANK functions

Allow ranking items in a group

Syntax:

s RANK () OVER ([query_partition_clause] order_by clause)
s DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

DENSE_RANK

m leaves no gaps in ranking sequence when there are ties

PERCENT_RANK &= (rank - 1) / (total rows - 1)

CUME_DIST - the cumulative distribution

» the number of partition rows preceding (or peers with) the current row / total partition
rows

s The value ranges from 1/Nto 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024

13

"
Analytic Functions

m Example

SELECT channel, calendar,

TO_CHAR(TRUNC(SUM(amount_sold), -6), '9,999,999’) AS sales,

RANK() OVER (ORDER BY TRUNC(amount_sold, -6)) DESC) AS rank,

DENSE_RANK() OVER (ORDER BY TRUNC(SUM(amount_sold), -6)) DESC) AS dense_rank
FROM sales, products

.. GROUP BY channel, calendar ORDER BY sales DESC

Direct sales 02.2015 10,000

Direct sales 03.2015 9,000 2 2
Internet 02.2015 6,000 3 3
Internet 03.2015 6,000 3 3
Partners 03.2015 4,000 5 4

MDA104, Vlastislav Dohnal, FI MUNI, 2024

N
Analytic Functions

m Group ranking - RANK function can operate within groups: the
rank gets reset whenever the group changes

A single query can contain more than one ranking function, each
partitioning the data into different groups.

PARTITION BY clause

SELECT ... RANK() OVER (PARTITION BY channel ORDER BY SUM(amount_sold) DESC) AS rank_by channel

CHANNEL CALENDAR “ RANK _BY_CHANNEL

Direct sales 02.2016 10,000 1
Direct sales 03.2016 9,000 2
Internet 02.2016 6,000 1
Internet 03.2016 6,000 1
Partners 03.2016 4,000 1

MDA104, Vlastislav Dohnal, FI MUNI, 2024 15

N
Analytic Functions

m NTILE splits a set into equal-sized groups

It divides an ordered partition into buckets and assigns a bucket number
to each row in the partition

Buckets are calculated so that each bucket has exactly the same number
of rows assigned to it or at most 1 row more than the others

SELECT ... NTILE(3) OVER (ORDER BY sales) NT_3 FROM ...

CHANNEL CALENDAR SALES NT_3

Direct sales 02.2016 10,000 1
. Direct sales 03.2016 9,000 1

NTILE(4) - quartile
Internet 02.2016 6,000 2
NTILE(100) - percentage o— 03.2016 6000 | 2
Partners 03.2016 4,000 3

m Not a part of the SQL99 standard, but adopted by major vendors

MDA104, Vlastislav Dohnal, FI MUNI, 2024 16

S
More on Ranking...

m Ranking can be done using basic SQL aggregation, but resultant
guery is very inefficient
select ID, (1 + (select count(*)
from student_grades B
where B.GPA > A.GPA)) as s_rank

from student_grades A
order by s_rank;

= More efficient solution with advanced SQL.:

select ID, rank() over (order by GPA desc) as s_rank
from student_grades

MDA104, Vlastislav Dohnal, FI MUNI, 2024

17

S
Windowing

" Used to smooth out random variations.

= E£.9.,, moving average: “Given sales values for each date, calculate
for each date the average of the sales on that day, the previous day,
and the next day”
= Window specification in SQL:
Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

MDA104, Vlastislav Dohnal, FI MUNI, 2024 18

S
Windowing

= Examples of other window specifications:
between rows unbounded preceding and current
rows unbounded preceding

range between 10 preceding and current row
- All rows with values between current row value —10 to current value

range interval 10 day preceding
- Not including current row

MDA104, Vlastislav Dohnal, FI MUNI, 2024

19

S
Windowing (Cont.)

= Can do windowing within partitions

= E.g., Glven a relation transaction (account_number, date_time,
value), where value is positive for a deposit and negative for a
withdrawal

"Find total balance of each account after each transaction on the account”

select account_number, date time,
sum (value) over
(partition by account_number
order by date time
rows unbounded preceding)
as balance
from transaction
order by account_number, date time

MDA104, Vlastislav Dohnal, FI MUNI, 2024

20

S
Windowing (Cont.)

m Obtain a value of a particular row of a window frame defined by
window clause (PARTITION BY...)

'Fir‘St_Value (exp r‘ession) CHANNEL CALENDAR SALES LOWEST_SALE

1a st va lue (express j_on) Direstsales 02.2016 10,000 4,000

nt h_va lue (express ion) Direstsales 03.2016 9,000 4,000
Internet 02.2016 6,000 4,000
Internet 03.2016 6,000 4,000
Partners 03.2016 4,000 4,000

SELECT ... FIRST_VALUE(sales) OVER (ORDER BY sales) AS lowest_sale

SELECT ... FIRST_VALUE(sales) OVER (PARTITION BY channel oRDER BY sales) AS lowest_sales

MDAZ104, Vlastislav Dohnal, FI MUNI, 2024 21

S
Windowing (Cont.)

m Access to a row that comes before the current row at a specified
physical offset with the current window frame (partition)
LAG(expression [,offset [,default_valuel]])

m ... after the current row
LEAD(expression [,offset [,default_value]]

CHANNEL CALENDAR SALES PREV_SALE

Direst sales 02.2016 10,000 NULL
Direst sales 03.2016 9,000 10,000
Internet 02.2016 6,000 NULL
Internet 03.2016 6,000 6,000
Partners 03.2016 4,000 NULL

SELECT ... LAG(sales, |) OVER (PARTITION BY channel orRDER BY calendar) AS prev_sales

MDAZ104, Vlastislav Dohnal, FI MUNI, 2024 22

Data Aggregations

m Used in GROUP BY clause instead of mere list of attributes
m ROLLUP (e1, e2, €3, ...)

represents the given list of expressions and all prefixes of the list including the
empty list

m CUBE (e1, e2, €3, ...)
represents the given list and all of its possible subsets (i.e., the power set)

B GROUPING SETS ((e1,e2), (e4,ed), (e6), () ...)

rows are grouped separately by each specified grouping set

m Function to obtain which “GROUP BY” takes place

GROUPING(args...)

m Integer bit mask indicating which arguments are not being included in the current
grouping set

MDA104, Vlastislav Dohnal, FI MUNI, 2024

23

S
Data Aggregations

m Pivoting table for make and model over sales data

SELECT make, model, sum(amount) FROM sales
GROUP BY CUBE (make, model)

BMW Mercedes By model

SUV

Sedan

Sport

By maker

SUM

MDA104, Vlastislav Dohnal, FI MUNI, 2024

24

" A
Data Aggregations

m Example of CUBE on table of car sales (year, make, model, amount)
GROUP BY CUBE (year, make, model) calculates:

Aggregate
] Group By
Sum (with total)
By model
sSuv
SEDAN Cross Tab
SPORT BMW MERCBy model
suv .
] Sum SEDAN e The Data Cube and
SPORT] The Sub-Space Aggregates
By Make [N S 0331
) 29500
Sum Ty, e z '2.0\%\6
%
By Year_

By Make & Year

B > By Make & model

Sum By model
MDA104, Vlastislav Dohnal, FI MUNI, 2024 25

Example sales relation

MDA104, Vlastislav Dohnal, FI MUNI, 2024

item_name | color |clothes_size | quantity
skirt dark small 2
skirt dark medium 3
skirt dark large 1
skirt pastel | small 11
skirt pastel | medium 9
skirt pastel | large 15
skirt white | small 2
skirt white medium 3
skirt white | large 3
dress dark small 2
dress dark medium 6
dress dark large 12
dress pastel | small 4
dress pastel | medium 3
dress pastel | large 3
dress white small 2
dress white medium 3
dress white large 0
shirt dark small 2
o e Anwle R LU, g

26

Cross Tabulation of sales by item_name and color

clothes_size | all

= The table above Is an example of a cross-tabulation (cross-
tab), also referred to as a pivot-table.

item_name

color
dark | pastel | white | total
skirt 8 35 10 53
dress 20 10 5 35
shirt 14 7 28 49
pants | 20 2 5 27
total 62 54 48 164

Values for one of the dimension attributes form the row headers
Values for another dimension attribute form the column headers

Other dimension attributes are listed on top
Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.

MDA104, Vlastislav Dohnal, FI MUNI, 2024

27

=" A
Data Cube
= A data cube is a multidimensional generalization of a cross-tab
= Can have n dimensions; we show 3 below
" Cross-tabs can be used as views on a data cube

S 378 /8 7 1711
/a4 /7 /6 /S 12/ 29
Z 2 B / B/ 7/ 82 L/
/16
dark | 8 | 20 | 14 | 20 | 62 /4/
. M
S opastel [35 [10| 7 | 2 |5 | 4]o|/
21,
white 10 8 28 5 48 /42/small
& medium .4
all |53 | 38 | 49 | 27 | 164 large oS
all Q\&“

skirt dress shirt pants all

item_name

MDA104, Vlastislav Dohnal, FI MUNI, 2024

Cross Tabulation With Hierarchy

m Cross-tabs can be easily extended to deal with hierarchies

Can drill down or roll up on a hierarchy

clothes_size: | all

category item_name color
dark| pastel | white| total
womenswear | skirt 8 8 10 | 53
dress 20 20 5 | 35
subtotal 28 28 15 88
menswear pants 14 14 28 49
shirt 20 20 b | 27
subtotal 34 34 33 76
total 62 62 48 164

MDA104, Vlastislav Dohnal, FI MUNI, 2024

30

Relational Representation of Cross-tabs

m Cross-tabs can be represented as
relations

We use the value all is used to
represent aggregates.

The SQL standard actually uses null
values in place of all despite confusion
with regular null values.

= The function grouping() can be applied on
an attribute
Returns 1 if the value is a null value

representing all, and returns 0 in all other
cases.

MDA104, Vlastislav Dohnal, FI MUNI, 2024

item_name | color |clothes_size | quantity
skirt dark all 8
skirt pastel all 35
skirt white all 10
skirt all all 53
dress dark all 20
dress pastel all 10
dress white all 5
dress all all 35
shirt dark all 14
shirt pastel all 7
shirt White all 28
shirt all all 49
pant dark all 20
pant pastel all 2
pant white all 5
pant all all 27
all dark all 62
all pastel all 54
all white all 48
all all all 164
31

N
Relational Representation of Cross-tabs (cont.)

= Can use the function decode() in the select clause to replace
such nulls by a value such as all

E.g., replace item_name in the query by
decode(grouping(item_name), 1, ‘all’, item_name)
m By analogy for color and clothes_size

In PostgreSQL, CASE WHEN ... THEN ... ELSE ... END must be used.

E.qg., replace item_name in the query by
case when grouping(item_name) = 1 then ‘all’ else item_name end
as item_name

MDA104, Vlastislav Dohnal, FI MUNI, 2024 32

N
Extended Aggregation

= The cube operation computes union of group by’s on every subset of the specified
attributes

= Example relation for this section _
sales(item_name, color, clothes_size, quantity)

= E.g., consider the query

select item_name, color, size, sum(number)

from sales _ _

group by cube(item_name, color, size)
This computes the union of eight different groupings of the sales relation:
{ (tem_name, color, size), (item_name, color),

(item_name, size), (color, size),
(|tem_name) (color),
(size), ()}

where () denotes an empty group by list.

= For each grouping, the result contains the null value
for attributes not present in the grouping.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 33

N
Extended Aggregation (Cont.)

= The rollup construct generates union on every prefix of specified list of
attributes
= E.qg,
select item_name, color, size, sum(number)

from sales _ ,
group by rollup(item_name, color, size)

Generates union of four groupings:
{ (item_name, color, size), (item_name, color), (item_name), () }
= Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

= E.g., suppose table itemcategory(item_name, category) gives the category of
each item. Then

select category, item_name, sum(number)

from sales, itemcategory _

where sales.item_name = itemcategory.item_name
group by rollup(category, item_name

would give a hierarchical summary by item_name and by category.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 34

N
Extended Aggregation (Cont.)

= Multiple rollups and cubes can be used in a single group by clause

Each generates set of group by lists, cross product of sets gives overall set of
group by lists

= E.g.,
select item_name, color, size, sum(number)

from sales
group by rollup(item_name), rollup(color, size)

generates the groupings
{item_name, ()} X {(color, size), (color), ()}

= { (item_name, color, size), (item_name, color), (item_name),
(color, size), (color), ()}

MDA104, Vlastislav Dohnal, FI MUNI, 2024

35

S
Data Analysis and OLAP

= Online Analytical Processing (OLAP)

Interactive analysis of data, allowing data to be summarized and viewed In
different ways in an online fashion (with negligible delay)

= Data that can be modeled as dimension attributes and measure
attributes, are called multidimensional data.

Measure attributes
- measure some value
- can be aggregated upon
- e.g., the attribute number of the sales relation

Dimension attributes

- define the dimensions on which measure attributes (or aggregates thereof) are
viewed

- e.g., attributes item_name, color, and size of the sales relation
MDA104, Vlastislav Dohnal, FI MUNI, 2024 36

=B
Types of analytical queries in OLAP

Pivoti
Slicin

ng: changing the dimensions used In a cross-tab is called
g:. creating a cross-tab for fixed values only

Sometimes called dicing, particularly when values for multiple dimensions

are
Rollu

Drill ©

fixed.
0: moving from finer-granularity data to a coarser granularity
own: The opposite operation - that of moving from coarser-

granu

arity data to finer-granularity data

MDA104, Vlastislav Dohnal, FI MUNI, 2024 37

N
Takeaways

m Single SELECT command can inspect table rows “multiple” times

In recursive gueries, windowing functions
but much faster than multiple specific SELECTs

m Statistical functions
variance, deviation, percentile, median
sliding statistics using windowing functions

m OLAP as a concept

MDA104, Vlastislav Dohnal, FI MUNI, 2024

38

	Snímek 1: MDA104 Introduction to Databases 6. Analytical SQL
	Snímek 2: Contents
	Snímek 3: Recursion in SQL
	Snímek 4: The Power of Recursion
	Snímek 6: Example of Fixed-Point Computation
	Snímek 7: Advanced Aggregate Functions
	Snímek 8: Advanced Aggregate Functions
	Snímek 9: Advanced Aggregate Functions
	Snímek 10: Analytic Functions
	Snímek 11: Analytic Functions
	Snímek 12: Analytic Functions
	Snímek 13: Analytic Functions
	Snímek 14: Analytic Functions
	Snímek 15: Analytic Functions
	Snímek 16: Analytic Functions
	Snímek 17: More on Ranking…
	Snímek 18: Windowing
	Snímek 19: Windowing
	Snímek 20: Windowing (Cont.)
	Snímek 21: Windowing (Cont.)
	Snímek 22: Windowing (Cont.)
	Snímek 23: Data Aggregations
	Snímek 24: Data Aggregations
	Snímek 25: Data Aggregations
	Snímek 26: Example sales relation
	Snímek 27: Cross Tabulation of sales by item_name and color
	Snímek 28: Data Cube
	Snímek 30: Cross Tabulation With Hierarchy
	Snímek 31: Relational Representation of Cross-tabs
	Snímek 32: Relational Representation of Cross-tabs (cont.)
	Snímek 33: Extended Aggregation
	Snímek 34: Extended Aggregation (Cont.)
	Snímek 35: Extended Aggregation (Cont.)
	Snímek 36: Data Analysis and OLAP
	Snímek 37: Types of analytical queries in OLAP
	Snímek 38: Takeaways

