MDA104: Tutorial 2 Relational Model Conversion from ERD

Vlastislav Dohnal

- Solution:
 - A table for Reader:
 - Reader(<u>id_no</u>, name, date of birth, address_street, address_place, address_postcode)
 - Derived attribute is ignored (not explicitly stored in table)
 - Composite attribute as its components.
 - Multivalued attribute as a separate table
 - Reader_phone(id_no, telephone)

- Convert the following E-R model to a relational model.
 - Consider the different mapping cardinality (m-n, 1-n, n-1, 1-1).
 - How will the relational model change?

- Convert the following E-R model to a relational model.
 - Consider the different mapping cardinality (m-n, 1-n, n-1, 1-1).
 - How will the relational model change?

- Solution: (for illustration, which is m-n)
 Customer(id, name)
 Account(number, balance)
- **Has**(customer_id, account_number, date_of_change_in_balance_change)
 - If cardinality is 1-m, i.e.
 customer may have multiple accounts, but account has only one owner
- **Has**(customer_id, <u>account_number</u>, date_of_change_in_balance_change)
 - Tables Customer, Account remain unchanged

- Solution:
 - Cardinality is 1-m, but account <u>must have</u> an owner, so we may optimize:

Customer(id, name)

- Account(number, balance, customer_id, date_of_change_in_balance_change)
 - Reference to customer is added as customer_id, which is a foreign key to Customer
 - No table for "has" is created!

- Solution:
 - We have weak entity, which is analogous to the previous slide.

Course(<u>code</u>, title, number_of_hours) **Seminar**(<u>code</u>, <u>number</u>, capacity)

- Code is added to seminar, which implements the reference to the corresponding course.
- Primary is a compound of code and number
 - Allows having a course to number seminars starting from 1.

Convert the following E-R model to a relational model.

Convert the following E-R model to a relational model.

Solution:

Course(code, title, number_of_hours) Student(učo, name) Enrollment(code, učo)

- □ Standard conversion so far...
- Weak entity set:

Seminar(<u>code</u>, <u>number</u>, capacity)

- No table for "has"
- Aggregation of enrollment has no impact to tables!
- Selection leads to the table:

Selection(code, number, učo)

- Form by attributes of PK from connecting tables, i.e.
 - Code, number (from seminar)
 - Code, učo (from student)

- Consider different cases of generalization/specialization constraints
 - Disjoint vs. overlapping
 - Total vs. partial

- Consider different cases of generalization/specialization constraints
 - Disjoint vs. overlapping
 - Total vs. partial

- Solution: (general one)
 - Tables for each entity set with references in the specialized ones.

Person(<u>učo</u>, name) Student(<u>učo</u>, program) Employee(<u>učo</u>, position, salary)

> To allow faster filtering by "type" of person, we typically add such an attribute, so:

Person(učo, name, type)

- Type contains
 - "P" for person,
 - "S" for student,
 - "E" for employee, and
 - "X" for being student and employee at the same time.

- For the given relational scheme, create an E-R diagram.
 - Useful if you do not have any docs for an existing system.

customer

<u>ssn</u>	name	street	place
700523/4532	Novák Petr	Brněnská 25	Praha
565130/9823	Černá Lucie	Kartouzská 10	Brno

telephone

<u>ssn</u>	<u>number</u>
700523/4532	602123569
565130/9823	549491111
700523/4532	777895364

- For the given relational scheme, create an E-R diagram.
 - Useful if you do not have any docs for an existing system.

customer

<u>ssn</u>	name	street	place
700523/4532	Novák Petr	Brněnská 25	Praha
565130/9823	Černá Lucie	Kartouzská 10	Brno

telephone

<u>ssn</u>	<u>number</u>
700523/4532	602123569
565130/9823	549491111
700523/4532	777895364

Solution:

- Street and place as a composite attribute
- Telephone numbers as a multivalued attribute

For the given relational scheme, create an E-R diagram.

branch

<u>title</u>	street	place
Praha-Spořilov	Brněnská 25	Praha
Brno-Královo pole	Kartouzská 10	Brno

account

maintains

<u>number</u>	balance
P-152	3000
P-015	1700
B-094	4000

branch_name	<u>account_number</u>
Praha-Spořilov	P-152
Praha-Spořilov	P-015
Brno-Královo pole	B-094

 For the given relational scheme, create an E-R diagram.

branch

<u>title</u>	street	place
Praha-Spořilov	Brněnská 25	Praha
Brno-Královo pole	Kartouzská 10	Brno

account

<u>number</u>	balance
P-152	3000
P-015	1700
B-094	4000

maintains

branch_name	account_number
Praha-Spořilov	P-152
Praha-Spořilov	P-015
Brno-Královo pole	B-094

Solution:

- Use of composite attributes is not mandatory
- Mind mapping cardinality
 - It must respect PK in the table!