Chapter 2 – Chemical Foundations

- 2.1 Covalent Bonds and Noncovalent Interactions
- 2.2 Chemical Building Blocks of Cells
- 2.3 Chemical Reactions and Chemical Equilibrium
- 2.4 Biochemical Energetics

Chapter 2 Opener Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company "Star of David" catenane.

Link for the book: https://shorturl.at/ZZSwX

Molecular complementarity

Protein A

Protein B

Chemical equilibrium

Figure 2-1a Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

Figure 2-1b Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

Chemical bond energy

Chapter 2 – Chemical Foundations

- 2.1 Covalent Bonds and Noncovalent Interactions
 - Molecules: hydrophilic, hydrophobic, and amphipathic
 - Covalent bonds: shared electron pairs arrange specific molecular geometries such as stereoisomers around asymmetric carbons; unequal electron sharing yields polar covalent bonds with partial charges; more stable than weaker noncovalent interactions
 - Four types of biological noncovalent interactions: ionic bonds (electrostatic interactions), hydrogen bonds (nonbonding electron hydrogen attraction), van der Waals interactions (transient dipole interactions), and hydrophobic effect interactions (reduces contact with water)
 - Molecular complementarity: fit between molecular shapes, charges, and other physical properties

TABLE 2-1 Bonding Properties of Atoms Most Abundant in Biomolecules						
Atom and Outer Electrons	Usual Number of Covalent Bonds	Typical Bond Geometry				
H	1	_ H				
· O ·	2	,				
· · · · · · · · · · · · · · · · · · ·	2, 4, or 6	, s				
· Ņ ·	3 or 4	~`` N 				
· · · · · · · · · · · · · · · · · · ·	5					
·ċ·	4	_ c _				

Simulation of ice formation

Figure 2-10

Stable complex

Protein A Protein C Less stable complex

2.1 Covalent Bonds and Noncovalent Interactions 2.2 Chemical Building Blocks of Cells 2.3 Chemical Reactions and Chemical Equilibrium 2.4 Biochemical Energetics

- Macromolecule polymers of monomer subunits: proteins-amino acids; nucleic acids-nucleotides; polysaccharidesmonosaccharides
- Proteins: differences in size, shape, charge, hydrophobicity, and reactivity of the 20 common amino acid side chains determine protein chemical and structural properties
- Nucleic acids: purine A and G, and pyrimidine C, T (DNA), and U (RNA) nucleotide bases comprise DNA and RNA
- Polysaccharides: hexoses (glucose and others) linked by two types of bonds
- Membranes: amphipathic phospholipids with saturated or unsaturated tails associate noncovalently to form bilayer membrane structure

Figure 2-13 Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

Figure 2-14

pH 5.8

Unnumbered 2 p44a Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

Figure 2-16

PURINES

Figure 2-17 Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

TABLE 2-3 Terminology of Nucleosides and Nucleotides							
		Purines		Pyrimidines			
Bas	ses	Adenine (A)	Guanine (G)	Cytosine (C)	Uracil (U) Thymine (T)		
Nucleosides	in RNA	Adenosine	Guanosine	Cytidine	Uridine		
	in DNA	Deoxyadenosine	Deoxyguanosine	Deoxycytidine	Deoxythymidine		
Nucleotides	in RNA	Adenylate	Guanylate	Cytidylate	Uridylate		
	in DNA	Deoxyadenylate	Deoxyguanylate	Deoxycytidylate	Deoxythymidylate		
Nucleoside mon	ophosphates	АМР	GMP	СМР	UMP		
Nucleoside diph	osphates	ADP	GDP	CDP	UDP		
Nucleoside tripł	nosphates	ATP	GTP	СТР	UTP		
Deoxynucleosid di-, and triphos	le mono-, phates	dAMP, etc.	dGMP, etc.	dCMP, etc.	dTMP, etc.		

Table 2-3

 α -D-Glucopyranose

Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

Unnumbered 2 p49

Unnumbered 2 p50c Molecular Cell Biology, Eighth Edition

© 2016 W. H. Freeman and Company

TABLE 2-4 Fatty Acids That Predominate in Phospholipids

Common Name of Acid (ionized form in parentheses)	Abbreviation	Chemical Formula
Saturated Fatty Acids		
Myristic (myristate)	C14:0	CH ₃ (CH ₂) ₁₂ COOH
Palmitic (palmitate)	C16:0	CH ₃ (CH ₂) ₁₄ COOH
Stearic (stearate)	C18:0	CH ₃ (CH ₂) ₁₆ COOH
Unsaturated Fatty Acids		
Oleic (oleate)	C18:1	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
Linoleic (linoleate)	C18:2	CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH
Arachidonic (arachidonate)	C20:4	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ CH=CH(CH ₂) ₃ COOH

Table 2-4

Which of the following represent covalent interactions?

- A. peptide bond formation during the translation of epidermal growth factor (EGF)
- B. disulfide formation during folding of the newly translated EGF
- C. ionic bond formation during folding of the newly translated EGF
- D. hydrogen bond formation during folding of the newly translated EGF
- E. Both A and B

Which of the following represent covalent interactions?

- A. peptide bond formation during the translation of epidermal growth factor (EGF)
- B. disulfide formation during folding of the newly translated EGF
- C. ionic bond formation during folding of the newly translated EGF
- D. hydrogen bond formation during folding of the newly translated EGF
- E. Both A and B

Which of the following accurately describe the molecule shown below?

 $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$

- A. hydrophilic
- B. hydrophobic
- C. polyunsaturated
- D. saturated
- E. None of the above

Which of the following accurately describes the molecule shown below?

$CH_3(CH_2)_7CH=CH(CH_2)_7COOH$

- A. hydrophilic
- B. hydrophobic

Because of the single double carbon bond, oleate is a monounsaturated fatty acid.

- C. polyunsaturated
- D. saturated
- E. None of the above

Which of the following cell monomers do NOT form structures using covalent bonds?

- A) Amino acids
- B) Nucleotides
- C) Phospholipids
- D) Monosaccharides
- E) Actually, these all polymerize using covalent bonds.

Which of the following cell monomers do NOT form structures using covalent bonds?

- A) Amino acids Amino acids are linked by peptide bonds.
- B) Nucleotides
- C) Phospholipids
- D) Monosaccharides
- E) Actually, these all polymerize using covalent bonds.

2.1 Covalent Bonds and Noncovalent Interactions2.2 Chemical Building Blocks of Cells2.3 Chemical Reactions and Chemical Equilibrium2.4 Biochemical Energetics

- Chemical reactions: K_{eq} =product/reactant ratio when forward and reverse rates are equal
- Cell linked reactions are at steady state not equilibrium
- Dissociation constant(K_d) is measure of noncovalent interactions
- pH (-log[H⁺]): cytoplasm (pH 7.2-7.4) but lower in some organelles (lysosome, pH 4.5)
- Acids release protons (H⁺); base bind protons
- Biological system uses weak acid/base buffers to maintain pH in narrow ranges.

Rate of forward reaction

(decreases as the concentration of reactants decreases)

Chemical equilibrium

(forward and reverse rates are equal, no change in concentration of reactants and products)

Rate of reverse reaction

(increases as the concentration of products increases)

When reactants are first mixed, initial concentration of products = 0

Time \longrightarrow

Figure 2-22 Molecular Cell Biology, Eighth Edition © 2016 W. H. Freeman and Company

Reaction rate

(a) Test tube equilibrium concentrations

(b) Intracellular steady-state concentrations

2.1 Covalent Bonds and Noncovalent Interactions
2.2 Chemical Building Blocks of Cells
2.3 Chemical Reactions and Chemical Equilibrium
2.4 Biochemical Energetics

- ΔG : measure of reaction change in free energy; - ΔG reactions are thermodynamically favorable; + ΔG reactions are not
- free energy change $\Delta G^{0'}$ (-2.3 *RT*log K_{eq}): calculated from reactants/products at equilibrium
- rate of reaction: depends on activation energy; lowered by a catalyst
- $-\Delta G$ reaction such as ATP hydrolysis to ADP + P_i can drive coupled + ΔG reaction.
- sun light energy captured by photosynthesis is ultimate source of all cell energy
- coenzyme (NAD+, FAD) oxidation (loss of e⁻) and reduction (gain of e⁻) electron transfer stores and transfers cell energy

Progress of reaction \longrightarrow

Unnumbered 2 p61 *Molecular Cell Biology*, Eighth Edition © 2016 W. H. Freeman and Company

