PřF BDADE Data Analytics
Name in Czech: Data Analytics
Bachelor's combined single-subject, language of instruction: English English
Included in the programme: PřF B-DAE Data Analytics

Study-related information

  • Parts of the final state examination and its content
    The final state examination will consist of both theoretically and practically oriented public dispute focusing on three main parts, checking the following abilities/knowledge:
    - explain the main concepts and tools of Mathematics, Statistics, related to Data Science in the frame covered by the Block A of the modules in the list below
    - explain main issues covered in the Block C, in particular in relation to practical experience gained during the programme
    - discuss the main concepts and tools from one of the specialization modules from the Block E.
  • Requirements of the study
    Data Analytics is a 7 semester, 210 credit, professional Bachelor's programme for foreign and domestic students, laying out the mathematical foundations of data analytics, machine learning, and appropriate technology, including at least one-semester practicum with a recognized commercial partner.
    The proposed study programme is intended to be a single-field professional study programme, but it will include several options for diverse specializations.
    The main modules will include (compulsory, if not stated otherwise):
    ===Block A ===
    --- Mathematical foundations – 80 credits in total ---
    Mathematics I (discrete and linear algebra-based applications), sem. 1, 12 credits
    Mathematics II (1D infinitesimal analysis, including Fourier analysis), sem. 1, 8 credits
    Mathematics III (nD infinitesimal analysis and selected more advanced topics), sem. 2, 12 credits
    Mathematics IV (discrete mathematics and algorithms), sem. 2, 8 credits
    Mathematics V (number theory, algebra, logic), sem. 3, 8 credits
    Probability (including necessary measure theory) sem. 3, 8 credits
    Statistics (including intensive R practicum) sem. 4, 12 credits
    -- Mathematics Advanced Selective - choose one of three:
    Optimization and Modelling, sem. 5-6, 12 credits
    Numerical Analysis and Scientific Computing, sem. 5-6, 12 credits
    Geometric Analysis, 5-6, 12 credits
    === Block B ===
    --- Soft skills (general component) – 10 credits in total
    Academic and Business Integrity, Writing, and Communication, sem. 2, 5 credits
    Project Management, sem. 4, 5 credits
    === Block C ===
    --- Programming introduction – 32 credits in total
    Introduction to Script Languages (serving also as common extra tutorial to Mathematics I and II), sem. 1, 6 credits
    Introduction to Databases, sem. 1, 6 credits
    Introduction to Python, sem. 2, 6 credits
    Introduction to Object-Oriented Languages, sem. 3, 6 credits
    Data Curation and Security, sem. 3, 8 credits
    === Block D ===
    --- Bloc Professional experience – 40 credits in total
    Applied Data Analytics, sem. 4, 10 credits
    Bachelor’s Practice / Capstone – 30 credits, sem. 5-7, 30 credits
    === Block E ===
    --- Specialization modules – 48 credits, choose 2 modules out of 4
    -- I. Machine Learning and AI – 24 credits
    Machine Learning Methods, sem. 5-6, 8 credits
    Artificial Neural Networks, sem. 5-6, 8 credits
    - Selective – choose 1 of 2:
    Natural Language Processing, sem. 5-6, 8 credits
    Image Processing and Recognition, sem. 5-6, 8 credits
    -- II. Complexity – 24 credits
    Network Science, sem. 5-6, 8 credits
    Machine Learning and Algorithms on Graphs, sem. 5-6, 8 credits
    Modelling Complex Systems, sem. 5-6, 8 credits
    -- III. Big Data – 24 credits
    Advanced Databases and Big Data, sem. 5-6, 6 credits
    Distributed Computing and Cloud Technology, sem. 5-6, 6 credits
    Data Visualization, sem. 5-6, 6 credits
    Cybersecurity, sem. 5-6, 6 credits
    -- IV. Mathematics Advanced Selective – 24 credits by choosing all three options in the selective courses in Block A

    The requested one-semester practicum will be related to the credited Bachelor practice / capstone project, where the students will deliver either a technical report, or theoretical work describing their achievements.
  • Suggestion of theses topics and the topics of defended theses
    not relevant

Recommended progress through the study plan

Povinné předměty (P+PV více než 135kr.) / Compulsory courses

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Profile Cat.
PřF:MDA101Mathematics I J. Slovákzk 0/0/012 1Z
PřF:MDA102Mathematics II J. Slovákzk 0/08 1Z
PřF:MDA103Script Languages I. Chrysikosz 0/0/06 1Z
PřF:MDA104Introduction to Databases V. Dohnalzk 0/0/06 1Z
PřF:MDA201Mathematics III J. Slovákzk 0/0/012 2Z
PřF:MDA202Mathematics IV J. Slovákzk 0/0/08 2Z
PřF:MDA203Academic and Business Integrity, Writing, and Communication T. Foltýnekz 0/0/05 2Z
PřF:MDA204Introduction to Python T. Foltýnekz 0/0/06 2Z
PřF:MDA301Mathematics V J. Slovákzk 0/08 3Z
PřF:MDA302Probability J. Koláčekzk 0/0/08 3Z
PřF:MDA303Introduction to Object-Oriented Languages Z. Nevěřilováz 0/0/06 3Z
PřF:MDA304Data Curation and Security S. Sobolevskyzk 0/0/08 3Z
PřF:MDA401Statistics D. Krauszk 0/0/012 4Z
PřF:MDA402Project Management J. Spurnýz 0/0/05 4Z
PřF:MDA403Applied Data Analytics S. Sobolevskyz 0/0/010 4P
PřF:MDA701Bachelor's practice/capstone project S. Sobolevskyz 0/0/030 4P
150 credits

Povinně-volitelné předměty / Selective courses

There are four blocks to select from.

1. Mathematics Advanced Selective

2. Machine Learning and AI

3. Complexity

4. Big Data

At least one course has to be chosen from the first block (12 credits)

Either two complete blocks have to be chosen from 2-4 (2 x 24 credits), or one of those blocks and complete selection of block 1 (again 2 x 24 credits).

Block 1

At least one of the three courses

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Profile Cat.
PřF:MDA501Optimization and Modelling P. Zemánekzk 0/0/012 5P
PřF:MDA502Numerical Analysis and Scientific Computing L. Přibylovázk 0/0/012 5P
PřF:MDA503Geometric Analysis K. Neusserzk 0/0/012 5P
36 credits

Block 2

The first two courses are obligatory, if the block is chosen. Choose one of the remaining two.

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Profile Cat.
PřF:MDA504Machine Learning Methods T. Brázdilzk 0/0/08 5P
PřF:MDA505Artificial Neural Networks T. Brázdilzk 0/0/08 5P
PřF:MDA601Natural Language Processing A. Horákzk 0/0/08 5P
PřF:MDA602Image Processing and Recognition P. Matulazk 0/0/08 5P
32 credits

Block 3

All courses are obligatory if this block is chosen.

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Profile Cat.
PřF:MDA506Network Science J. Spurnýzk 0/0/08 5P
PřF:MDA603Machine Learning and Algorithms on Graphs V. Nováčekzk 0/0/08 6P
PřF:MDA604Modeling Complex Systems J. Spurnýzk 0/0/08 6P
24 credits

Block 4

All four courses are obligatory if this block is chosen.

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Profile Cat.
PřF:MDA507Advanced Databases and Big Data V. Dohnalzk 0/0/06 5P
PřF:MDA508Distributed Computing and Cloud Technology B. Bühnovázk 0/0/06 5P
PřF:MDA509Data Visualization B. Kozlíkovázk 0/0/06 5P
PřF:MDA605Cybersecurity V. Matyášzk 0/0/06 6P
24 credits