IA046 Computability
Faculty of InformaticsSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Luboš Brim, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Tue 15. 2. to Tue 10. 5. Tue 10:00–11:50 B411
- Prerequisites
- Prerequisities: IB107 Computability and Complexity
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- https://www.fi.muni.cz/usr/brim/home/#teaching
IA046 Computability
Faculty of InformaticsSpring 2021
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Luboš Brim, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Wed 14:00–15:50 Virtuální místnost
- Prerequisites
- Prerequisities: IB107 Computability and Complexity
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Teacher's information
- https://www.fi.muni.cz/usr/brim/home/#teaching
IA046 Computability
Faculty of InformaticsSpring 2018
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Luboš Brim, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- SOUHLAS
Prerequisities: IB107 Computability and Complexity,M4155 - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- English
- Further Comments
- The course is taught: every week.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2016
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Thu 16:00–17:50 B410
- Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2014
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Thu 14:00–15:50 B410
- Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2012
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Thu 12:00–13:50 D3
- Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
The main goals are: to understand basics of computability over real numbers; to learn additional results about classification of computational problems, in particular about arithmetical hierarchy; to get introduced into relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2010
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 14:00–15:50 B411
- Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
The main goals are: to understand basics of computability over real numbers; to learn additional results about classification of computational problems, in particular about arithmetical hierarchy; to get introduced into relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2008
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 14:00–15:50 B411
- Prerequisites
- Prerequisities: IB107 Computability and Complexity,MA006 Set Theory
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
- Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Assessment methods (in Czech)
- Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2006
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 14:00–15:50 B410
- Prerequisites
- ! I046 Computability II
Prerequisities: IB107 Computability and Complexity,MA006 Set Theory - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
- Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Assessment methods (in Czech)
- Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2005
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 14:00–15:50 B410
- Prerequisites
- ! I046 Computability II
Prerequisities: IB107 Computability and Complexity,MA006 Set Theory - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
- Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Assessment methods (in Czech)
- Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2004
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 14:00–15:50 B411
- Prerequisites
- ! I046 Computability II
Prerequisities: IB107 Computability and Complexity,MA006 Set Theory - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives (in Czech)
- Předmět je zaměřen na hlubší studium výsledků teorie vyčíslitelnosti s důrazem na osvojení si používaných důkazových metod a technik.
- Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Assessment methods (in Czech)
- Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsAutumn 2002
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Tue 12:00–13:50 B411
- Prerequisites
- ! I046 Computability II
Prerequisities: IB107 Computability and Complexity,MA006 Set Theory - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, M-IN)
- Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Course objectives (in Czech)
- Předmět je zaměřen na hlubší studium výsledků teorie vyčíslitelnosti s důrazem na osvojení si používaných důkazových metod a technik.
- Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem. Applications.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy, applications to logic.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/usr/brim/I046
IA046 Computability
Faculty of InformaticsSpring 2023
The course is not taught in Spring 2023
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Luboš Brim, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- Prerequisities: IB107 Computability and Complexity
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 20 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
The course is taught: every week. - Teacher's information
- https://www.fi.muni.cz/usr/brim/home/#teaching
IA046 Computability
Faculty of InformaticsSpring 2019
The course is not taught in Spring 2019
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Luboš Brim, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- SOUHLAS
Prerequisities: IB107 Computability and Complexity,M4155 - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- English
- Further Comments
- Course is no more offered.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2017
The course is not taught in Spring 2017
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2015
The course is not taught in Spring 2015
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
At the end of the course the students will be able to understand basics of computability over real numbers; will get acquainted with additional results about classification of computational problems, in particular about arithmetical hierarchy and relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2013
The course is not taught in Spring 2013
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
The main goals are: to understand basics of computability over real numbers; to learn additional results about classification of computational problems, in particular about arithmetical hierarchy; to get introduced into relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2011
The course is not taught in Spring 2011
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
The main goals are: to understand basics of computability over real numbers; to learn additional results about classification of computational problems, in particular about arithmetical hierarchy; to get introduced into relativised theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativised computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Teaching methods
- lectures, homeworks
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2009
The course is not taught in Spring 2009
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Prerequisites
- Prerequisities: IB107 Computability and Complexity,M4155
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
The main goals are: to understand basics of computability over real numbers; to learn additional results about classification of computational problems, in particular about arithmetical hierarchy; to get introduced into relativized theory of computability. - Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Assessment methods
- Final exam is written. In the case homeworks are assigned, these are counted by maximum of 30% to the final evaluation. No reading materials are allowed during the final examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
IA046 Computability
Faculty of InformaticsSpring 2007
The course is not taught in Spring 2007
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Prerequisites
- ! I046 Computability II
Prerequisities: IB107 Computability and Complexity,MA006 Set Theory - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on deeper understanding of results in the computability theory with emphasis on methods and techniques used to prove such results.
- Syllabus
- Recursion theorem, generalized Rice theorem, Rogers isomorphism theorem.
- Application to logic. Arithmetical sets and functions, Goedel-Rosser incompleteness theorem. Goedel's second incompleteness theorem.
- Relativized computability. Programs with oracles.
- Kleene hierarchy, Turing reducibility, tt-reducibility, arithmetical hierarchy.
- Post's problem.
- Analytical hierarchy.
- Computability on real numbers, complete partial orders, domains.
- Literature
- Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
- Assessment methods (in Czech)
- Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/usr/brim/IA046
- Enrolment Statistics (recent)