MA002 Calculus
Faculty of InformaticsAutumn 2021
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 14. 9. to Tue 7. 12. Tue 14:00–15:50 B204
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 25 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations.
- Learning outcomes
- At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Written intrasemestral tests in seminars (30 points).
Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
The conditions for final evaluation may be specified later depending on the pandemic situation and legal regulations. - Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2020
- Extent and Intensity
- 2/2. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 16:00–17:50 B204
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 25 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations.
- Learning outcomes
- At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Written intrasemestral tests in seminars (30 points).
Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
The conditions for final evaluation may be specified later depending on the pandemic situation and legal regulations. - Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2019
- Extent and Intensity
- 2/2. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Mon 10:00–11:50 B204
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 25 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations.
- Learning outcomes
- At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2018
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 10:00–11:50 B204
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 23 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2017
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Thu 14:00–15:50 A320
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 23 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2016
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 8:00–9:50 A320
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 23 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2015
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 8:00–9:50 C525
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 23 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2014
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
Mgr. Milan Bačík (seminar tutor) - Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 14:00–15:50 B204
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 22 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2013
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
Mgr. Bc. Tomáš Hebelka (seminar tutor) - Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 10:00–11:50 G125
- Timetable of Seminar Groups:
- Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 22 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2012
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
Mgr. Bc. Tomáš Hebelka (assistant)
doc. RNDr. Michal Veselý, Ph.D. (assistant)
RNDr. Jan Vondra, Ph.D. (alternate examiner) - Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 11:00–13:50 G124
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 22 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Teaching methods
- lectures (3 hours per week); it is recommended to enrol also MA019 Practicing Calculus III
- Assessment methods
- Exam: written (theory test + practical part), it takes 120 minutes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2011
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
doc. Mgr. Petr Zemánek, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics - Timetable
- Mon 17:00–19:50 G123
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 22 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Teaching methods
- lectures
- Assessment methods
- Teaching: lecture 3 hours a week. Exam: written.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2010
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Tue 8:00–10:50 B003
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 26 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Teaching methods
- lectures
- Assessment methods
- Teaching: lecture 3 hours a week. Exam: written.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2009
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Mon 9:00–11:50 B011
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 26 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Teaching methods
- lectures
- Assessment methods
- Teaching: lecture 3 hours a week. Exam: written.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2008
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Mon 9:00–11:50 B011
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods
- Teaching: lecture 3 hours a week
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2007
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- prof. RNDr. Miroslav Bartušek, DrSc.
Faculty of Informatics
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Mon 16:00–18:50 B011
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods (in Czech)
- Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2006
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Miroslav Bartušek, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- prof. RNDr. Miroslav Bartušek, DrSc.
Faculty of Informatics
Contact Person: prof. RNDr. Miroslav Bartušek, DrSc. - Timetable
- Mon 9:00–11:50 A107
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II || M001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods (in Czech)
- Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2005
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Miroslav Bartušek, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- prof. RNDr. Miroslav Bartušek, DrSc.
Faculty of Informatics
Contact Person: prof. RNDr. Miroslav Bartušek, DrSc. - Timetable
- Mon 9:00–11:50 A107
- Prerequisites
- ! M002 Calculus III || MB001 Calculus II || M001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods (in Czech)
- Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2004
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Miroslav Bartušek, DrSc. (lecturer)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Contact Person: prof. RNDr. Miroslav Bartušek, DrSc. - Timetable
- Wed 8:00–10:50 B003
- Prerequisites
- M002 Calculus III || MB001 Calculus II || M001 Calculus II
Completion of courses Mathematical Analysis I and Mathematical Analysis II. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- The course that presents not obligatory part of mathematical analysis. It is devoted to study of series, line integrals,a basic of the theory of complex functions of complex variable and elementary methods of the solution of differential equations.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods (in Czech)
- Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2003
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Miroslav Bartušek, DrSc. (lecturer)
- Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Contact Person: prof. RNDr. Miroslav Bartušek, DrSc. - Timetable
- Thu 15:00–17:50 B011
- Prerequisites (in Czech)
- M002 Calculus III || MB001 Calculus II || M001 Calculus II
Znalosti v rozsahu bakalářských předmětů Matematická analýza I, Matematická analýza II. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives (in Czech)
- Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods (in Czech)
- Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus III
Faculty of InformaticsAutumn 2002
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Miroslav Bartušek, DrSc. (lecturer)
- Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Faculty of Informatics
Contact Person: prof. RNDr. Miroslav Bartušek, DrSc. - Timetable
- Thu 7:00–9:50 A107
- Prerequisites (in Czech)
- ! M002 Calculus III
Znalosti v rozsahu bakalářských předmětů Matematická analýza I, Matematická analýza II. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives (in Czech)
- Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
- Syllabus
- Functional series, uniform convergence.
- Power series, radius of convergence.
- Fourier series.
- Dependence of integrals on parameters.
- Implicit functions.
- Line integral, Green's formula.
- Complex functions of complex variable.
- Cauchy's theorem, residua.
- First order differential equations, direction field, initial conditions.
- Higher order linear differential equations, equations with constant coefficients.
- Literature
- NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 pp. skripta. ISBN 80-210-1949-2. info
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- Assessment methods (in Czech)
- Písemná zkouška.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
MA002 Calculus
Faculty of InformaticsAutumn 2023
The course is not taught in Autumn 2023
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 25 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations.
- Learning outcomes
- At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Written intrasemestral tests in seminars (30 points).
Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
The conditions for final evaluation may be specified later depending on the pandemic situation and legal regulations. - Language of instruction
- Czech
- Further Comments
- Course is no more offered.
The course is taught: every week.
MA002 Calculus
Faculty of InformaticsAutumn 2022
The course is not taught in Autumn 2022
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Faculty of Informatics
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Basic knowledge from the calculus and multivariable calculus
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 25 fields of study the course is directly associated with, display
- Course objectives
- This course extends the basic knowledge from mathematical analysis. It is devoted to the basic study of systems of linear differential equations, line integrals, the theory of complex functions of complex variable, and calculus of variations.
- Learning outcomes
- At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- Systems of linear differential equations.
- Line integral.
- Analysis in complex domain.
- Calculus of variations.
- Literature
- KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 1st ed. Brno: Masarykova univerzita Brno, 1995, 207 pp. ISBN 80-210-1130-0. info
- https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
- KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
- https://www.math.muni.cz/~dosly/varpoc.pdf
- Teaching methods
- lectures (2 hours per week) + tutorial (2 hours per week)
- Assessment methods
- Written intrasemestral tests in seminars (30 points).
Exam: written (a multiple-choice test with the theory + a practical part), it takes 120 minutes. It is possible to get at most 100 points (30 points from the tutorial, 10 points from the test, and 60 points from the practical part). For the success it is needed to have at least 50 points to pass the exam but simultaneously it is necessary to reach at least 10 points from the tutorial and 4 points from the theory test.
The conditions for final evaluation may be specified later depending on the pandemic situation and legal regulations. - Language of instruction
- Czech
- Further Comments
- Course is no more offered.
The course is taught: every week.
- Enrolment Statistics (recent)