MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2019
Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Josef Šilhan, Ph.D. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Mgr. Martin Doležal (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Mgr. Stanislav Zámečník (seminar tutor)
Mgr. Jakub Záthurecký, Ph.D. (seminar tutor)
doc. RNDr. Martin Čadek, CSc. (alternate examiner)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Tue 16:00–17:50 D1
  • Timetable of Seminar Groups:
MB103/01: Mon 14:00–15:50 B204, J. Šilhan
MB103/02: Tue 12:00–13:50 B204, J. Böhm
MB103/03: Tue 10:00–11:50 B204, M. Doležal
MB103/04: Thu 12:00–13:50 B204, R. Suchánek
MB103/05: Wed 16:00–17:50 A320, R. Suchánek
MB103/06: Thu 14:00–15:50 B204, R. Suchánek
MB103/07: Wed 10:00–11:50 B204, T. Svoboda
MB103/08: Wed 12:00–13:50 B204, T. Svoboda
MB103/09: Thu 16:00–17:50 A320, J. Záthurecký
MB103/10: Thu 18:00–19:50 A320, J. Záthurecký
MB103/11: Wed 18:00–19:50 B204, M. Doležal
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 53 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 18 points or more and at least 5 points for the last exam. More can be found in the IS of this course.
Language of instruction
Czech
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2018
Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Mgr. Martin Doležal (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Mgr. Stanislav Zámečník (seminar tutor)
doc. RNDr. Martin Čadek, CSc. (assistant)
doc. Mgr. Josef Šilhan, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Tue 14:00–15:50 D1
  • Timetable of Seminar Groups:
MB103/01: Fri 10:00–11:50 A320, M. Doležal
MB103/02: Fri 12:00–13:50 A320, M. Doležal
MB103/03: Thu 16:00–17:50 B204, T. Svoboda
MB103/04: Thu 18:00–19:50 B204, M. Šimková
MB103/05: Wed 18:00–19:50 A320, M. Šimková
MB103/06: Thu 10:00–11:50 B204, T. Svoboda
MB103/07: Wed 16:00–17:50 B204, S. Zámečník
MB103/08: Wed 18:00–19:50 B204, S. Zámečník
MB103/09: Thu 14:00–15:50 B204, J. Böhm
MB103/10: Thu 8:00–9:50 A320, R. Suchánek
MB103/11: Wed 10:00–11:50 B204, M. Šimková
MB103/12: Thu 10:00–11:50 A320, R. Suchánek
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2017
Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Mgr. Martin Doležal (seminar tutor)
Mgr. Markéta Janošová (seminar tutor)
Ing. Mgr. Ondřej Nováček (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Mgr. Vojtěch Šindlář (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Tue 14:00–15:50 D1
  • Timetable of Seminar Groups:
MB103/01: Fri 8:00–9:50 A320, M. Panák
MB103/02: Fri 10:00–11:50 A320, M. Panák
MB103/03: Wed 8:00–9:50 A320, M. Panák
MB103/04: Thu 10:00–11:50 A320, M. Doležal
MB103/05: Thu 12:00–13:50 A320, M. Doležal
MB103/06: Wed 16:00–17:50 A320, O. Nováček
MB103/07: Wed 18:00–19:50 A320, O. Nováček
MB103/08: Wed 10:00–11:50 A320, M. Šimková
MB103/09: Thu 18:00–19:50 A320, M. Šimková
MB103/10: Wed 14:00–15:50 A320, M. Janošová
MB103/11: Thu 12:00–13:50 B204, V. Šindlář
MB103/12: Thu 14:00–15:50 B204, J. Böhm
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2018, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2016
Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Bc. Kateřina Družbíková (seminar tutor)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
Ing. Mgr. Ondřej Nováček (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
RNDr. Jiří Pecl, Ph.D. (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Arman Taghavi-Chabert, PhD. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Tue 16:00–17:50 D1
  • Timetable of Seminar Groups:
MB103/T01: Wed 21. 9. to Thu 22. 12. Wed 13:00–15:30 118, A. Novotná, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/T02: Tue 18. 10. to Tue 20. 12. Tue 9:40–11:15 110, Fri 21. 10. to Fri 23. 12. Fri 9:00–10:35 118, J. Pecl
MB103/01: Wed 12:00–13:50 A320, M. Panák
MB103/02: Wed 14:00–15:50 A320, A. Taghavi-Chabert
MB103/03: Tue 12:00–13:50 A320, M. Panák
MB103/04: Tue 14:00–15:50 A320, M. Panák
MB103/05: Tue 8:00–9:50 B204, S. Zlatošová
MB103/06: Tue 10:00–11:50 B204, S. Zlatošová
MB103/07: Thu 8:00–9:50 B204, O. Nováček
MB103/08: Thu 10:00–11:50 B204, O. Nováček
MB103/09: Thu 14:00–15:50 A320, M. Šimková
MB103/10: Thu 16:00–17:50 A320, M. Šimková
MB103/11: Fri 8:00–9:50 A320, T. Svoboda
MB103/12: Fri 10:00–11:50 A320, T. Svoboda
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2015
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Bc. Kateřina Družbíková (seminar tutor)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
Mgr. Bc. Tomáš Janík (seminar tutor)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Tue 14:00–15:50 D1
  • Timetable of Seminar Groups:
MB103/T01: Mon 12:00–13:35 116, Wed 23. 9. to Tue 22. 12. Wed 8:00–9:35 116, T. Janík, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/T02: Tue 22. 9. to Tue 22. 12. Tue 10:00–11:35 116, T. Janík, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/01: Wed 8:00–9:50 A320, M. Panák
MB103/02: Wed 10:00–11:50 A320, M. Panák
MB103/03: Fri 8:00–9:50 B204, M. Panák
MB103/04: Fri 10:00–11:50 B204, M. Panák
MB103/05: Mon 16:00–17:50 B204, J. Komárková
MB103/06: Mon 18:00–19:50 B204, J. Komárková
MB103/07: Mon 18:00–19:50 A320, J. Meitner
MB103/08: Wed 18:00–19:50 A320, J. Meitner
MB103/09: Tue 16:00–17:50 C525, K. Družbíková
MB103/10: Tue 18:00–19:50 C525, K. Družbíková
MB103/11: Thu 8:00–9:50 B204, M. Chvátal
MB103/12: Thu 10:00–11:50 B204, M. Chvátal
MB103/13: Wed 12:00–13:50 B204, R. Suchánek
MB103/14: Wed 14:00–15:50 B204, R. Suchánek
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2014
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Veronika Bernhauerová, Ph.D. (seminar tutor)
Mgr. Bc. Tomáš Janík (seminar tutor)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
Mgr. Paula Neubrandová (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
Mgr. Bc. Kamil Rajdl, Ph.D. (seminar tutor)
doc. Lukáš Vokřínek, PhD. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Mon 12:00–13:50 D1
  • Timetable of Seminar Groups:
MB103/T01: Tue 16. 9. to Fri 19. 12. Tue 14:20–15:55 Učebna S4 (35a), Thu 18. 9. to Fri 19. 12. Thu 10:00–11:35 Učebna S1 (36a), Thu 16. 10. to Fri 19. 12. Thu 11:40–13:15 Učebna S2 (36b), T. Janík, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/T02: Mon 22. 9. to Fri 19. 12. Mon 8:00–10:25 Učebna S2 (36b), A. Novotná, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/01: Wed 12:00–13:50 B204, M. Panák
MB103/02: Wed 14:00–15:50 B204, M. Panák
MB103/03: Mon 14:00–15:50 B204, M. Panák
MB103/04: Thu 8:00–9:50 A320, L. Vokřínek
MB103/05: Thu 10:00–11:50 A320, L. Vokřínek
MB103/06: Thu 12:00–13:50 A320, S. Zlatošová
MB103/07: Thu 14:00–15:50 A320, S. Zlatošová
MB103/08: Fri 10:00–11:50 A320, J. Komárková
MB103/09: Fri 12:00–13:50 A320, J. Komárková
MB103/10: Mon 18:00–19:50 B204, J. Meitner
MB103/11: Wed 18:00–19:50 B204, J. Meitner
MB103/12: Thu 8:00–9:50 B204, P. Neubrandová
MB103/13: Thu 10:00–11:50 B204, P. Neubrandová
MB103/14: Thu 16:00–17:50 A320, K. Rajdl
MB103/15: Thu 18:00–19:50 A320, K. Rajdl
MB103/16: Wed 14:00–15:50 A320, V. Bernhauerová
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2013
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Mgr. Bc. Kamil Rajdl, Ph.D. (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Mgr. Jan Fikejs (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Wed 16:00–17:50 D1
  • Timetable of Seminar Groups:
MB103/T01: Wed 18. 9. to Fri 20. 12. Wed 8:00–9:55 Učebna S2 (36b), Fri 20. 9. to Fri 20. 12. Fri 8:00–9:55 Učebna S2 (36b), J. Fikejs, A. Novotná, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/T02: Tue 24. 9. to Fri 20. 12. Tue 15:00–16:55 Učebna S7 (18), Thu 26. 9. to Fri 20. 12. Thu 8:00–10:00 Učebna S8 (17), M. Werl, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB103/01: Tue 12:00–13:50 G101, P. Pupík
MB103/02: Tue 14:00–15:50 G101, P. Pupík
MB103/03: Thu 8:00–9:50 G124, S. Zlatošová
MB103/04: Thu 10:00–11:50 G124, S. Zlatošová
MB103/05: Wed 8:00–9:50 G124, J. Komárková
MB103/06: Wed 10:00–11:50 G124, J. Komárková
MB103/07: Wed 14:00–15:50 G101, M. Chvátal
MB103/08: Fri 10:00–11:50 G124, J. Meitner
MB103/09: Fri 12:00–13:50 G124, J. Meitner
MB103/10: Thu 12:00–13:50 G125, K. Rajdl
MB103/11: Thu 14:00–15:50 G125, M. Chvátal
MB103/12: Fri 8:00–9:50 G125, M. Werl
MB103/13: Fri 10:00–11:50 G125, M. Werl
MB103/14: Thu 8:00–9:50 G125, J. Komárková
MB103/15: Thu 10:00–11:50 G125, K. Rajdl
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2012
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Petr Pupík (lecturer)
Mgr. Zdeněk Kadeřábek, Ph.D. (seminar tutor)
Mgr. Bc. Jaromír Kuben (seminar tutor)
Mgr. Tamara Lorencová, Ph.D. (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Bc. Kamil Rajdl, Ph.D. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Mgr. Jan Fikejs (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Mon 18:00–19:50 D1, Wed 12:00–13:50 D1
  • Timetable of Seminar Groups:
MB103/T01A: Wed 14:00–15:55 Učebna S8 (17), A. Novotná
MB103/T01AA: Fri 8:00–10:55 Učebna S8 (17), A. Novotná
MB103/T02: Wed 19. 9. to Fri 21. 12. Wed 9:00–10:55 Učebna S7 (18), M. Werl
MB103/01: Thu 8:00–9:50 G124, S. Zlatošová
MB103/02: Fri 8:00–9:50 G125, S. Zlatošová
MB103/03: Fri 10:00–11:50 G125, S. Zlatošová
MB103/04: Mon 12:00–13:50 G124, L. Mžourková Macálková
MB103/05: Mon 14:00–15:50 G124, L. Mžourková Macálková
MB103/06: Tue 12:00–13:50 G125, L. Mžourková Macálková
MB103/07: Wed 18:00–19:50 G125, J. Kuben
MB103/08: Thu 18:00–19:50 G125, J. Kuben, rezerva
MB103/09: Wed 14:00–15:50 G124, J. Kuben
MB103/10: Mon 8:00–9:50 G125, K. Rajdl
MB103/11: Mon 10:00–11:50 G125, K. Rajdl
MB103/12: Wed 16:00–17:50 G124, Z. Kadeřábek
MB103/13: Thu 16:00–17:50 G124, T. Lorencová
MB103/14: Thu 18:00–19:50 G124, T. Lorencová
MB103/15: Wed 18:00–19:50 G124, Z. Kadeřábek
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2011
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Martin Panák, Ph.D. (lecturer)
Mgr. Marek Filakovský, Ph.D. (seminar tutor)
Mgr. Jan Gregorovič, Ph.D. (seminar tutor)
Mgr. Miroslava Maračková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
RNDr. Bc. Iveta Selingerová, Ph.D. (seminar tutor)
Mgr. Jaroslav Šeděnka, Ph.D. (seminar tutor)
doc. Mgr. Josef Šilhan, Ph.D. (seminar tutor)
Mgr. Aneta Tesařová (seminar tutor)
Mgr. Martin Tláskal (seminar tutor)
RNDr. Jan Vondra, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Mon 14:00–15:50 D1, Tue 8:00–9:50 D1, Tue 10:00–11:50 D1
  • Timetable of Seminar Groups:
MB103/01: Wed 8:00–9:50 B410, M. Panák
MB103/02: Wed 8:00–9:50 G124, J. Šilhan
MB103/03: Wed 10:00–11:50 G124, J. Šilhan
MB103/04: Wed 16:00–17:50 G123, M. Filakovský
MB103/05: Wed 18:00–19:50 G123, M. Filakovský
MB103/06: Fri 10:00–11:50 G123, J. Šeděnka
MB103/07: Fri 12:00–13:50 G123, J. Šeděnka
MB103/08: Tue 18:00–19:50 G125, M. Maračková
MB103/09: Fri 14:00–15:50 G123, M. Tláskal
MB103/10: Wed 12:00–13:50 G124, M. Maračková
MB103/11: Thu 8:00–9:50 G124, I. Selingerová
MB103/12: Thu 14:00–15:50 G125, J. Gregorovič
MB103/13: Thu 10:00–11:50 G125, J. Gregorovič
MB103/14: Thu 12:00–13:50 G125, J. Gregorovič
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2010
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Wed 15:00–16:50 D1, Thu 17:00–18:50 D1
  • Timetable of Seminar Groups:
MB103/01: Mon 10:00–11:50 B007, M. Bulant
MB103/02: Tue 18:00–19:50 B204, M. Werl
MB103/03: Tue 16:00–17:50 B007, P. Pupík
MB103/04: Tue 18:00–19:50 B007, P. Pupík
MB103/05: Wed 10:00–11:50 B007, S. Zlatošová
MB103/06: Wed 12:00–13:50 B007, S. Zlatošová
MB103/07: Mon 8:00–9:50 B003, M. Werl
MB103/08: Mon 10:00–11:50 B003, M. Werl
MB103/09: Tue 14:00–15:50 B007, A. Novotná
MB103/10: Mon 12:00–13:50 B003, L. Mžourková Macálková
MB103/11: Mon 14:00–15:50 B003, L. Mžourková Macálková
MB103/12: Wed 12:00–13:50 B003, J. Komárková
MB103/13: Mon 16:00–17:50 B003, J. Komárková
MB103/14: Wed 8:00–9:50 B007, A. Novotná
MB103/15: No timetable has been entered into IS. A. Novotná
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 19 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2009
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Jan Herman (seminar tutor)
RNDr. Pavel Karas, Ph.D. (seminar tutor)
Mgr. Petr Liška, Ph.D. (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Mgr. Veronika Trnková (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
RNDr. Pavel Karas, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Wed 12:00–13:50 D1, Thu 17:00–18:50 D1
  • Timetable of Seminar Groups:
MB103/01: Tue 16:00–17:50 B003, P. Pupík
MB103/02: Tue 18:00–19:50 B003, P. Pupík
MB103/03: Tue 8:00–9:50 B003, V. Trnková
MB103/04: Tue 10:00–11:50 B003, V. Trnková
MB103/05: Wed 8:00–9:50 B007, M. Werl
MB103/06: Wed 10:00–11:50 B007, M. Werl
MB103/07: Mon 18:00–19:50 B007, J. Herman
MB103/08: Mon 8:00–9:50 B007, P. Liška
MB103/09: Mon 10:00–11:50 B007, P. Liška
MB103/10: Thu 14:00–15:50 B007, S. Zlatošová
MB103/11: Thu 16:00–17:50 B007, S. Zlatošová
MB103/12: Wed 8:00–9:50 B204, P. Karas
MB103/13: Fri 14:00–15:50 C511, P. Karas
MB103/14: No timetable has been entered into IS. A. Novotná
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2008
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Martin Panák, Ph.D. (lecturer)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Michaela Benešová (seminar tutor)
RNDr. Mgr. Jana Dražanová, Ph.D. (seminar tutor)
Mgr. Jan Gregorovič, Ph.D. (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Mon 12:00–13:50 D3, Tue 14:00–15:50 D1
  • Timetable of Seminar Groups:
MB103/01: Wed 8:00–9:50 B003, M. Panák
MB103/02: Wed 10:00–11:50 B003, M. Panák
MB103/03: Wed 14:00–15:50 B003, M. Panák
MB103/04: Fri 10:00–11:50 B003, J. Gregorovič
MB103/05: Fri 12:00–13:50 B003, J. Gregorovič
MB103/06: Thu 8:00–9:50 B003, J. Dražanová
MB103/07: Thu 10:00–11:50 B003, J. Dražanová
MB103/08: Fri 8:00–9:50 B011, A. Novotná
MB103/09: Fri 10:00–11:50 B011, A. Novotná
MB103/10: Thu 14:00–15:50 B007, M. Benešová
MB103/11: Fri 8:00–9:50 C511, M. Benešová
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory home assignements with support in tutorials, the exam includes 3 written tests during the semester. The exam has the form of written tests.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2007
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
RNDr. Jiří Glozar (seminar tutor)
prof. Mgr. Petr Hasil, Ph.D. (seminar tutor)
Mgr. Ing. Eva Pekárková, Ph.D. (seminar tutor)
Mgr. Veronika Trnková (seminar tutor)
Mgr. Jiří Vítovec, Ph.D. (seminar tutor)
doc. Mgr. Petr Zemánek, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Tue 16:00–17:50 D1, Wed 14:00–15:50 D3, Fri 9:00–10:50 D3
  • Timetable of Seminar Groups:
MB103/01: Mon 8:00–9:50 B011, J. Vítovec
MB103/02: Mon 10:00–11:50 B011, J. Vítovec
MB103/03: Wed 16:00–17:50 B003, P. Zemánek
MB103/04: Wed 18:00–19:50 B003, P. Zemánek
MB103/05: Fri 11:00–12:50 B003, E. Pekárková
MB103/06: Fri 13:00–14:50 B003, E. Pekárková
MB103/07: Wed 8:00–9:50 B003, V. Trnková
MB103/08: Wed 8:00–9:50 B007, P. Hasil
MB103/09: Mon 18:00–19:50 B410, V. Trnková
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, selected applications
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Dvouhodinová přednáška a dvouhodinová přednášená ukázková řešení s řešením vzorových příkladů. Povinná je docházka do cvičení, součástí zkoušky budou 2-3 průběžně psané písemky. Zakončení písemnou zkouškou na konci semestru.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2006
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
doc. Mgr. Kamila Hasilová, Ph.D. (seminar tutor)
RNDr. Ing. Hana Kotoučková, Ph.D. (seminar tutor)
Mgr. Tomáš Lerch (seminar tutor)
Mgr. Tomáš Lipenský (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
RNDr. Tomáš Pavlík, Ph.D. (seminar tutor)
Mgr. Jiří Vítovec, Ph.D. (seminar tutor)
Mgr. Michal Bulant, Ph.D. (assistant)
prof. RNDr. Ivana Černá, CSc. (assistant)
Mgr. Nina Hrtoňová (assistant)
doc. RNDr. Jaromír Kuben, CSc. (assistant)
prof. Ing. Martin Kvizda, Ph.D. (assistant)
doc. PhDr. Ing. Radim Marada, Ph.D. (assistant)
prof. RNDr. Luděk Matyska, CSc. (assistant)
RNDr. Miroslava Misáková (assistant)
PhDr. Hana Němcová (assistant)
doc. PhDr. Jiří Němec, Ph.D. (assistant)
prof. RNDr. Tomáš Pitner, Ph.D. (assistant)
RNDr. Roman Plch, Ph.D. (assistant)
Ing. Mgr. Jiří Rambousek, Ph.D. (assistant)
RNDr. Petra Šarmanová, Ph.D. (assistant)
prof. RNDr. Eva Táborská, CSc. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Mon 14:00–15:50 D3, Tue 14:00–15:50 D3
  • Timetable of Seminar Groups:
MB103/01: Thu 8:00–9:50 B003, D. Dereník
MB103/02: Thu 10:00–11:50 B003, D. Dereník
MB103/03: Wed 8:00–9:50 B003, T. Lipenský
MB103/04: Wed 10:00–11:50 B003, T. Lipenský
MB103/05: Fri 12:00–13:50 B007, K. Hasilová
MB103/06: Fri 10:00–11:50 B007, T. Lerch
MB103/07: Wed 8:00–9:50 B011, J. Vítovec
MB103/08: Tue 18:00–19:50 A107, H. Kotoučková
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, selected applications
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Dvouhodinová přednáška a dvouhodinová přednášená ukázková řešení úloh, spolu s povinnostmi samostatného řešení a odevzdávání úloh se zázemím cvičení. Zakončení písemnou zkouškou na konci semestru a dvě další krátké písemné zkoušky během semestru.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2005
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
doc. RNDr. Martin Kolář, Ph.D. (seminar tutor)
RNDr. Gabriela Kraváčková (seminar tutor)
Mgr. Jaroslava Sidorová (seminar tutor)
Mgr. Stepan Sukovych (seminar tutor)
RNDr. Jitka Vacková, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Thu 10:00–11:50 D1
  • Timetable of Seminar Groups:
MB103/01: Thu 12:00–13:50 B003, R. Šimon Hilscher
MB103/02: Mon 10:00–11:50 B003, M. Kolář
MB103/03: Tue 8:00–9:50 B011, J. Vacková
MB103/04: Tue 10:00–11:50 B011, J. Vacková
MB103/05: Tue 14:00–15:50 B003, G. Kraváčková
MB103/06: Tue 16:00–17:50 B003, S. Sukovych
MB103/07: Thu 14:00–15:50 B003, G. Kraváčková
MB103/08: Thu 16:00–17:50 B003, G. Kraváčková
MB103/09: Mon 14:00–15:50 B003, J. Sidorová
MB103/10: Tue 14:00–15:50 B007, J. Sidorová
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Antiderivative, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
Literature
  • DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
  • NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Two-hour lectures and practising, two-hour written final exam. Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2004
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
RNDr. Gabriela Kraváčková (seminar tutor)
Mgr. et Mgr. Lukáš Maňásek (seminar tutor)
Mgr. Daniel Marek, Ph.D. (seminar tutor)
Mgr. Zdeněk Opluštil, Ph.D. (seminar tutor)
Mgr. Stepan Sukovych (seminar tutor)
Mgr. Hana Štěpánková, Ph.D. (seminar tutor)
Mgr. Magda Zemánková (seminar tutor)
Guaranteed by
prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics
Timetable
Tue 8:00–9:50 D1
  • Timetable of Seminar Groups:
MB103/01: Thu 16:00–17:50 B007, G. Kraváčková
MB103/02: Thu 14:00–15:50 B007, G. Kraváčková
MB103/03: Wed 8:00–9:50 B007, Z. Opluštil
MB103/04: Wed 10:00–11:50 B007, Z. Opluštil
MB103/05: Thu 10:00–11:50 B003, S. Sukovych
MB103/06: Thu 8:00–9:50 B003, S. Sukovych
MB103/07: Fri 12:00–13:50 B007, M. Zemánková
Prerequisites (in Czech)
MB102 Mathematics II || M003 Linear Algebra and Geometry I || M503 Linear Algebra and Geometry I || MB003 Linear Algebra and Geometry I
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
there are 10 fields of study the course is directly associated with, display
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Antiderivative, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
Literature
  • DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
  • NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Two-hour lectures and practising, two-hour written final exam. Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2003
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
Mgr. et Mgr. Lukáš Maňásek (seminar tutor)
Mgr. Daniel Marek, Ph.D. (seminar tutor)
Mgr. Hana Štěpánková, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics
Timetable
Thu 8:00–9:50 U5
  • Timetable of Seminar Groups:
MB103/01: Thu 12:00–13:50 B003, R. Šimon Hilscher
MB103/02: Mon 16:00–17:50 B007, H. Štěpánková
MB103/03: Mon 18:00–19:50 B007, H. Štěpánková
MB103/04: Tue 16:00–17:50 B007, L. Maňásek
MB103/05: Tue 18:00–19:50 B007, L. Maňásek
MB103/06: Fri 12:00–13:50 B003, D. Marek
Prerequisites (in Czech)
MB102 Mathematics II || M003 Linear Algebra and Geometry I || M503 Linear Algebra and Geometry I || MB003 Linear Algebra and Geometry I
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Primitive function, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
Literature
  • ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1983, 876 s. info
  • ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1986, 896 s. URL info
  • ŠKRÁŠEK, Josef. Základy vyšší matematiky. 2, B. 1. vyd. Brno: VUT, 1963, 316 s. : i. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2021

The course is not taught in Autumn 2021

Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Josef Šilhan, Ph.D. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Mgr. Martin Doležal (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Mgr. Stanislav Zámečník (seminar tutor)
Mgr. Jakub Záthurecký, Ph.D. (seminar tutor)
doc. RNDr. Martin Čadek, CSc. (alternate examiner)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 53 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 18 points or more and at least 5 points for the last exam. More can be found in the IS of this course.
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Continuous models and statistics

Faculty of Informatics
Autumn 2020

The course is not taught in Autumn 2020

Extent and Intensity
2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Josef Šilhan, Ph.D. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Mgr. Martin Doležal (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Mgr. Stanislav Zámečník (seminar tutor)
Mgr. Jakub Záthurecký, Ph.D. (seminar tutor)
doc. RNDr. Martin Čadek, CSc. (alternate examiner)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Prerequisites
! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 53 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems.
Syllabus
  • The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
  • Content of the course Continuous models and statistics:
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
  • Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
Literature
    recommended literature
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    not specified
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
Assessment methods
During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 18 points or more and at least 5 points for the last exam. More can be found in the IS of this course.
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.

MB103 Mathematics III

Faculty of Informatics
Autumn 2002

The course is not taught in Autumn 2002

Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
Helena Dvořáčková (assistant)
Guaranteed by
prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics
Prerequisites
MB102 Mathematics II
Mathematics II, MB102.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Primitive function, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
Literature
  • ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1983, 876 s. info
  • ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1986, 896 s. URL info
  • ŠKRÁŠEK, Josef. Základy vyšší matematiky. 2, B. 1. vyd. Brno: VUT, 1963, 316 s. : i. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.
  • Enrolment Statistics (recent)