MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2019
Rozsah
4/2/0. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Mária Šimková (cvičící)
doc. Mgr. Josef Šilhan, Ph.D. (náhr. zkoušející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Po 14:00–15:50 A217, St 14:00–15:50 A217
  • Rozvrh seminárních/paralelních skupin:
MB203/01: Po 16:00–17:50 B204, M. Šimková
MB203/02: Út 16:00–17:50 B204, M. Šimková
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 54 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píše 5 minipísemek, každá na bod, jsou zadány 4 domácí úlohy, každá za bod. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 25 bodů celkem a 5 bodů ze závěrečné písemky. Podrobnější informace jsou v IS pro tento předmět.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2018
Rozsah
4/2/0. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Mgr. Radek Suchánek, Ph.D. (cvičící)
doc. RNDr. Martin Čadek, CSc. (pomocník)
doc. Mgr. Josef Šilhan, Ph.D. (pomocník)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Po 17. 9. až Po 10. 12. Po 16:00–17:50 A320, St 8:00–9:50 A320
  • Rozvrh seminárních/paralelních skupin:
MB203/01: St 16:00–17:50 A320, R. Suchánek
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píší malé písemky, cvičení je celkově ohodnoceno max 5 body. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2017
Rozsah
4/2/0. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Mgr. Bc. Tomáš Janík (cvičící)
Mgr. Martin Panák, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Po 14:00–15:50 A218, Út 16:00–17:50 B204
  • Rozvrh seminárních/paralelních skupin:
MB203/01: St 12:00–13:50 A320, M. Panák
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píší malé písemky, cvičení je celkově ohodnoceno max 5 body. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2016
Rozsah
4/2. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Mgr. Bc. Tomáš Janík (cvičící)
Mgr. Martin Panák, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Fakulta informatiky
Rozvrh
Po 16:00–17:50 A218, St 10:00–11:50 A218
  • Rozvrh seminárních/paralelních skupin:
MB203/01: St 8:00–9:50 A320, M. Panák
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píší malé písemky, cvičení je celkově ohodnoceno max 5 body. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2017, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2015
Rozsah
4/2. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Mgr. Bc. Tomáš Janík (cvičící)
Mgr. Martin Panák, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Fakulta informatiky
Rozvrh
Po 16:00–17:50 A320, Út 16:00–17:50 A320
  • Rozvrh seminárních/paralelních skupin:
MB203/T02: Út 22. 9. až Út 22. 12. Út 10:00–11:35 116, T. Janík, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB203/01: Út 14:00–15:50 B204, M. Panák
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píší malé písemky, cvičení je celkově ohodnoceno max 5 body. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2016, podzim 2017, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2014
Rozsah
4/2. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Mgr. Martin Panák, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Fakulta informatiky
Rozvrh
Po 18:00–19:50 A217, Út 14:00–15:50 A318
  • Rozvrh seminárních/paralelních skupin:
MB203/01: Út 8:00–9:50 B204, M. Panák
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píší malé písemky, cvičení je celkově ohodnoceno max 5 body. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2013
Rozsah
4/2. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Mgr. Michal Bulant, Ph.D. (přednášející)
Mgr. Martin Panák, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Fakulta informatiky
Rozvrh
Út 16:00–17:50 G125, St 16:00–17:50 G125
  • Rozvrh seminárních/paralelních skupin:
MB203/01: St 14:00–15:50 G125, M. Panák
MB203/02: Pá 8:00–9:50 G124, M. Panák
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píší malé písemky, cvičení je celkově ohodnoceno max 5 body. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2021

Předmět se v období podzim 2021 nevypisuje.

Rozsah
4/2/0. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Mária Šimková (cvičící)
doc. Mgr. Josef Šilhan, Ph.D. (náhr. zkoušející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 54 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píše 5 minipísemek, každá na bod, jsou zadány 4 domácí úlohy, každá za bod. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 25 bodů celkem a 5 bodů ze závěrečné písemky. Podrobnější informace jsou v IS pro tento předmět.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2020

Předmět se v období podzim 2020 nevypisuje.

Rozsah
4/2/0. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Mária Šimková (cvičící)
doc. Mgr. Josef Šilhan, Ph.D. (náhr. zkoušející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Předpoklady
! MB103 Spojité modely a statistika && !NOW( MB103 Spojité modely a statistika )
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 54 mateřských oborů, zobrazit
Cíle předmětu
Na konci tohoto kurzu bude student schopen:
používat metody matematické analýzy pro funkce více proměnných, včetně integrace po křivkách a plochách; řešit základní optimalizační úlohy; používat diferenciální rovnice pro spojité modelování procesů;
rozumět základním teoretickým konceptům teorie pravděpodobnosti; prakticky aplikovat metody popisné i matematické statistiky na jednoduché úlohy.
Osnova
  • Třetí část čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení.
  • Základní pojmy teorie pravděpodobnosti, náhodné veličiny a jejich číselné charakteristiky, popisná statistika, stručný úvod do matematické statistiky.
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • ZVÁRA, Karel a Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
    neurčeno
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
Výukové metody
Výuka je vedena formou dvou klasických dvouhodinových přednášek a standardních cvičení provázených domácími úkoly.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píše 5 minipísemek, každá na bod, jsou zadány 4 domácí úlohy, každá za bod. Závěrečná praktická písemná zkouška je na max 20 bodů a je následována ústní zkouškou, která ověřuje zvládnutí teorie. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 25 bodů celkem a 5 bodů ze závěrečné písemky. Podrobnější informace jsou v IS pro tento předmět.
Informace učitele
Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.

MB203 Spojité modely a statistika B

Fakulta informatiky
podzim 2012

Předmět se v období podzim 2012 nevypisuje.

Rozsah
4/2. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
Mgr. Michal Bulant, Ph.D. (přednášející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Fakulta informatiky
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 17 mateřských oborů, zobrazit
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.