PV030 Textual Information Systems
Faculty of InformaticsSpring 2013
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Timetable
- Tue 10:00–12:50 C416, Tue 12:00–12:50 B311
- Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 45 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2012
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Timetable
- Thu 10:00–11:50 C511, Thu 12:00–12:50 B311, Thu 12:00–12:50 C511
- Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 45 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2011
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Mon 12:00–13:50 B411, Mon 14:00–14:50 B116, Mon 14:00–14:50 B411
- Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 44 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2010
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Mon 12:00–13:50 B204, Mon 18:00–18:50 B311, Mon 18:00–18:50 B410
- Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 41 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2009
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Mon 12:00–13:50 B204
- Timetable of Seminar Groups:
PV030/02: Mon 17:00–17:50 B311, Mon 17:00–17:50 B410, P. Sojka - Prerequisites
- Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 38 fields of study the course is directly associated with, display
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2008
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Wed 8:00–9:50 C511, Wed 14:00–14:50 C525, Wed 14:00–14:50 B311
- Prerequisites
- Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods (in Czech)
- Výuka probíhá klasickým způsobem a je zakončena písemným testem (tvoří 70 % hodnocení). Příklady testů z předchozích let jsou vystaveny na webu předmětu. 30 % závěrečného hodnocení tvoří hodnocení písemek zadávaných v průběhu semestru na cvičeních. Na cvičeních dochází k procvičování látky z přednášek, k brainstormingu. V průběhu výuky jsou studenti motivováni dílčími úkoly honorovanými udělením prémiových bodů.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2007
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Mon 12:00–13:50 A107
- Timetable of Seminar Groups:
PV030/03: Mon 18:00–18:50 B411, Mon 18:00–18:50 B311, P. Sojka - Prerequisites
- ! P030 Textual Information Systems
Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods (in Czech)
- Výuka probíhá klasickým způsobem a je zakončena písemným testem (tvoří 70 % hodnocení). Příklady testů z předchozích let jsou vystaveny na webu předmětu. 30 % závěrečného hodnocení tvoří hodnocení písemek zadávaných v průběhu semestru na cvičeních. Na cvičeních dochází k procvičování látky z přednášek, k brainstormingu. V průběhu výuky jsou studenti motivováni dílčími úkoly honorovanými udělením prémiových bodů.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2006
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Wed 10:00–11:50 D2, Thu 17:00–17:50 B410, Thu 17:00–17:50 B311
- Timetable of Seminar Groups:
PV030/03: Thu 18:00–18:50 B410, Thu 18:00–18:50 B311, P. Sojka - Prerequisites
- ! P030 Textual Information Systems
Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods (in Czech)
- Výuka probíhá klasickým způsobem a je zakončena písemným testem (tvoří 70 % hodnocení). Příklady testů z předchozích let jsou vystaveny na webu předmětu. 30 % závěrečného hodnocení tvoří hodnocení písemek zadávaných v průběhu semestru na cvičeních. Na cvičeních dochází k procvičování látky z přednášek, k brainstormingu. V průběhu výuky jsou studenti motivováni dílčími úkoly honorovanými udělením prémiových bodů.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2005
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. Ing. Jan Staudek, CSc.
Department of Computer Systems and Communications – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Tue 10:00–11:50 D1
- Timetable of Seminar Groups:
PV030/02: Tue 17:00–17:50 B311, Tue 17:00–17:50 B204, P. Sojka
PV030/03: Tue 18:00–18:50 B204, Tue 18:00–18:50 B311, P. Sojka - Prerequisites
- ! P030 Textual Information Systems
Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 18 fields of study the course is directly associated with, display
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods (in Czech)
- Výuka probíhá klasickým způsobem a je zakončena písemným testem (tvoří 70 % hodnocení). Příklady testů z předchozích let jsou vystaveny na webu předmětu. 30 % závěrečného hodnocení tvoří hodnocení písemek zadávaných v průběhu semestru na cvičeních. Na cvičeních dochází k procvičování látky z přednášek, k brainstormingu. V průběhu výuky jsou studenti motivováni dílčími úkoly honorovanými udělením prémiových bodů.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2004
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. Ing. Jan Staudek, CSc.
Department of Computer Systems and Communications – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Mon 12:00–13:50 D2
- Timetable of Seminar Groups:
PV030/02: Mon 16:00–16:50 A107, Mon 16:00–16:50 B311, P. Sojka
PV030/03: Mon 17:00–17:50 A107, Mon 17:00–17:50 B311, P. Sojka - Prerequisites
- ! P030 Textual Information Systems
Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, N-IN)
- Information Technology (programme FI, B-IN)
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods (in Czech)
- Výuka probíhá klasickým způsobem a je zakončena písemným testem (tvoří 70 % hodnocení). Příklady testů z předchozích let jsou vystaveny na webu předmětu. 30 % závěrečného hodnocení tvoří hodnocení písemek zadávaných v průběhu semestru na cvičeních. Na cvičeních dochází k procvičování látky z přednášek, k brainstormingu. V průběhu výuky jsou studenti motivováni dílčími úkoly honorovanými udělením prémiových bodů.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2003
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
RNDr. David Antoš, Ph.D. (seminar tutor) - Guaranteed by
- doc. Ing. Jan Staudek, CSc.
Department of Computer Systems and Communications – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D. - Timetable
- Mon 9:00–10:50 D2
- Timetable of Seminar Groups:
PV030/02: Mon 14:00–14:50 B204, Mon 14:00–14:50 B311, D. Antoš
PV030/03: Mon 15:00–15:50 B204, Mon 15:00–15:50 B311, D. Antoš
PV030/04: Mon 16:00–16:50 B204, Mon 16:00–16:50 B311, D. Antoš
PV030/05: Mon 17:00–17:50 B204, Mon 17:00–17:50 B311, D. Antoš - Prerequisites
- ! P030 Textual Information Systems
Students are strongly adviced to bring some basic knowledge of automata theory (IB005) and natural language processing (IB030 or IB047). Some database basics (PB154) will be helpful as well. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, N-IN)
- Information Technology (programme FI, B-IN)
- Course objectives
- Basic techniques and algorithms used in textual information systems are taught. That means text search algorithms (KMP, AC, BM, RK, ...), data structures used for index storage, query languages, architecture of textual information system that uses natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an examples of search and indexing engine.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modelling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Assessment methods (in Czech)
- Výuka probíhá klasickým způsobem a je zakončena písemným testem (tvoří 70 % hodnocení). Příklady testů z předchozích let jsou vystaveny na webu předmětu. 30 % závěrečného hodnocení tvoří hodnocení domácích písemných úloh zadávaných v průběhu semestru. Na cvičeních dochází k procvičování látky z přednášek, k brainstormingu. V průběhu výuky jsou studenti motivováni dílčími úkoly honorovanými udělením prémiových bodů.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2019
The course is not taught in Spring 2019
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Course is no more offered.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2018
The course is not taught in Spring 2018
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Course is no more offered.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2017
The course is not taught in Spring 2017
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Course is no more offered.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2016
The course is not taught in Spring 2016
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Course is no more offered.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2015
The course is not taught in Spring 2015
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 38 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
PV030 Textual Information Systems
Faculty of InformaticsSpring 2014
The course is not taught in Spring 2014
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Prerequisites
- Students are strongly advised to bring some basic knowledge of automata theory (IB005 Formal Languages and Automata) and natural language processing (IB030 Introduction to Natural Language Processing or IB047 Introduction to Corpus Linguistics and Computer Lexicography). Some database basics (PB154 Database Systems) will be helpful as well.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 38 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: apply basic techniques and algorithms used in textual information systems; understand text search algorithms (KMP, AC, BM, RK,...) and be familiar with data structures used for index storage, query languages, architectures of textual information system (e.g. Google) including those that use natural language processing techniques.
- Syllabus
- Basic notions. TIS - text information system. Classification of information systems.
- Searching in TIS. Searching and pattern matching classification and data structures.
- Algorithms of Knuth-Morris-Pratt, Aho-Corasick. Boyer-Moore, Commentz-Walter, Buczilowski.
- Theory of automata for searching. Classification of searching problems.
- Indexes. Indexing methods. Data structures for searching and indexing.
- Google as an example of search and indexing engine. Pagerank.
- Signature methods.
- Query languages and document models: boolean, vector, probabilistic, MMM, Paice.
- Data compression. Basic notions. Statistic methods.
- Compression methods based on dictionary. Neural nets for text compression.
- Syntactic methods. Context modeling.
- Spell checking. Filtering information channels. Document classification.
- Literature
- Jaroslav Pokorn\'y, V\'aclav Sn\'a\v{s}el, Du\v{s}an H\'usek: Dokumentografick\'e informa\v{c}n\'{\i} syst\'emy, skripta MFF UK Praha, 1998.
- KORFHAGE, Robert R. Information storage and retrieval. New York: Wiley Computer Publishing, 1997, xiii, 349. ISBN 0471143383. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Finite-state language processing. Edited by Emmanuel Roche - Yves Schabes. Cambridge: Bradford Book, 1997, xv, 464. ISBN 0262181827. info
- Teaching methods
- Classical lectures, intermixed with brainstorming, class discussions and lectures by experts from industry (e.g. Seznam).
- Assessment methods
- Teaching methods are classical; during the course and at the end the students are examined by written tests. In final test 70 % of points can be achieved, in midterm test 30 %. Examples of tests are posted on the web page of the course. During the course students are motivated by brainstormings, questions and small examples honored by extra points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV030/
- Enrolment Statistics (recent)