PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization
Fakulta informatikypodzim 2024
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučováno kontaktně - Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 26. 9. až Čt 19. 12. Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 32 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každý semestr.
PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization
Fakulta informatikyjaro 2025
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučováno kontaktně - Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 32 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization
Fakulta informatikyjaro 2024
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 79 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization
Fakulta informatikypodzim 2023
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Mgr. Marek Kadlčík (pomocník)
Mgr. Vlastimil Martinek (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 80 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každý semestr.
PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization
Fakulta informatikyjaro 2023
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 16. 2. až Čt 11. 5. Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 79 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization
Fakulta informatikypodzim 2022
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Mgr. Martin Geletka (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 80 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každý semestr.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2021
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
RNDr. Vít Starý Novotný, Ph.D. (pomocník)
Mgr. Dávid Lupták (pomocník)
Mgr. Michal Štefánik (pomocník)
Mgr. Mikuláš Bankovič (pomocník)
Mgr. Vlastimil Martinek (pomocník)
Mgr. Marek Petrovič (pomocník)
Mgr. Jakub Ryšavý (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 16. 9. až Čt 9. 12. Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 79 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2020
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
RNDr. Vít Starý Novotný, Ph.D. (pomocník)
Mgr. Dávid Lupták (pomocník)
Mgr. Michal Štefánik (pomocník) - Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 79 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2019
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 10:00–11:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 79 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2018
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 8:00–9:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 47 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2017
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 13:00–14:50 A502
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 47 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
- Výstupy z učení
- At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2016
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Út 10:00–11:50 A502, kromě Út 6. 12. ; a Út 6. 12. 10:00–11:50 C522
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 47 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2015
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Čt 14:00–15:50 C522
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 47 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2014
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Pá 10:00–11:50 C522
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 46 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2013
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh seminárních/paralelních skupin
- PV212/01: Čt 14:00–15:50 C522, P. Sojka
- Předpoklady
- SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 46 mateřských oborů, zobrazit
- Cíle předmětu
- The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
- Osnova
- Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
- Metody hodnocení
- Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
- Vyučovací jazyk
- Angličtina
- Navazující předměty
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2012
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky - Rozvrh
- Út 8:00–9:50 C522
- Předpoklady
- SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 46 mateřských oborů, zobrazit
- Cíle předmětu
- At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
- Osnova
- Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
- Metody hodnocení
- Every student will either refer about some research topic or solve some project and present its solution.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. - Další komentáře
- Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2011
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D. - Předpoklady
- SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 46 mateřských oborů, zobrazit
- Cíle předmětu
- At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
- Osnova
- Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
- Metody hodnocení
- Every student will either refer about some research topic or solve some project and present its solution.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2010
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D. - Rozvrh
- Út 15:00–16:50 C522
- Předpoklady
- SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 44 mateřských oborů, zobrazit
- Cíle předmětu
- At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
- Osnova
- Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
- Metody hodnocení
- Every student will either refer about some research topic or solve some project and present its solution.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. - Další komentáře
- Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2009
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D. - Rozvrh
- Út 12:00–13:50 C522
- Předpoklady
- SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 44 mateřských oborů, zobrazit
- Cíle předmětu
- At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
- Osnova
- Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Výukové metody
- Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
- Metody hodnocení
- Every student will either refer about some research topic or solve some project and present its solution.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning
Fakulta informatikypodzim 2008
- Rozsah
- 0/2/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- doc. RNDr. Petr Sojka, Ph.D. (přednášející)
- Garance
- prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D. - Rozvrh
- Út 11:00–12:50 C418
- Předpoklady
- SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 37 mateřských oborů, zobrazit
- Cíle předmětu
- Students will be given readings and/or projects to read and/or solve. On seminars students will refer about topics studied and they will be discussed thoroughly.
- Osnova
- Topics and projects for every year will be posted on the web page of the course.
- Literatura
- WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
- KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
- MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
- Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
- Metody hodnocení
- Every student will either refer about some research topic or solve some project and present its solution.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. - Další komentáře
- Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2024, nejnovější)