PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization

Fakulta informatiky
podzim 2024
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučováno kontaktně
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 26. 9. až Čt 19. 12. Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 32 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každý semestr.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, jaro 2025.

PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization

Fakulta informatiky
jaro 2025
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučováno kontaktně
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 32 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024.

PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization

Fakulta informatiky
jaro 2024
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 79 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, podzim 2024, jaro 2025.

PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization

Fakulta informatiky
podzim 2023
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Mgr. Marek Kadlčík (pomocník)
Mgr. Vlastimil Martinek (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 80 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každý semestr.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization

Fakulta informatiky
jaro 2023
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 16. 2. až Čt 11. 5. Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 79 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Seminar on Machine Learning, Information Retrieval, and Scientific Visualization

Fakulta informatiky
podzim 2022
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Mgr. Michal Štefánik (pomocník)
Mgr. Martin Geletka (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 80 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každý semestr.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2021
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
RNDr. Vít Starý Novotný, Ph.D. (pomocník)
Mgr. Dávid Lupták (pomocník)
Mgr. Michal Štefánik (pomocník)
Mgr. Mikuláš Bankovič (pomocník)
Mgr. Vlastimil Martinek (pomocník)
Mgr. Marek Petrovič (pomocník)
Mgr. Jakub Ryšavý (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 16. 9. až Čt 9. 12. Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 79 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2020
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
RNDr. Vít Starý Novotný, Ph.D. (pomocník)
Mgr. Dávid Lupták (pomocník)
Mgr. Michal Štefánik (pomocník)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 79 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2019
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Sojka, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 10:00–11:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 79 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2018
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 8:00–9:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 47 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2017
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 13:00–14:50 A502
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 47 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is to give floor to students (both pregradual and gradual) to read, practice and present scientific results (eitheir their or those ackquires from scientific papaers. Every student will have her/his own presentation in the seminar.
Výstupy z učení
At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. They also will be able to prepare scientific presentation of their work (slides, thesis), and communicate scientific results.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are in English. The students will have an ample space in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project (typical from their thesis) and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
Course is especially useful to be enrolled by students preparing their research thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2016
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Út 10:00–11:50 A502, kromě Út 6. 12. ; a Út 6. 12. 10:00–11:50 C522
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 47 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2015
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Čt 14:00–15:50 C522
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 47 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2014
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Pá 10:00–11:50 C522
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 46 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2013
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
doc. RNDr. Petr Matula, Ph.D.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh seminárních/paralelních skupin
PV212/01: Čt 14:00–15:50 C522, P. Sojka
Předpoklady
SOUHLAS
Interest in research problems in areas of Machine Learning, Scientific Visualization, Information Retrieval and Digital Typography. Courage to learn how to move the human knowledge and understanding in these areas by CS research. Willingness to study particular topic of choice, and refer, discuss and brainstorm about it with others.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 46 mateřských oborů, zobrazit
Cíle předmětu
The aim of the seminar is a presentation of results of student research (both pregradual and gradual). At the end of the course students will have experience in presenting and discussion of their or other (from readings) research. Every student has to have her/his own presentation in the seminar.
Osnova
  • Referred topics/projects for every year will be posted on the web page of the course, and negotiated with registered students. The lectures consist mostly of students' presentations. The presentations and discussion are either in Czech or, according to the preferences of the speaker, in English. The students can control the content of the seminar in the discussions after each presentation.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given research problems. Students will be given readings as a preparation for the contact teaching hours, if they will not come with their own research problems.
Metody hodnocení
Every student will either refer about some research topic from readings or solve some project and present its solution. Students must attend the seminar regularly and take active part in the seminar discussions.
Vyučovací jazyk
Angličtina
Navazující předměty
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm and discuss in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered. "Education is not about the filling of a bucket but the lighting of a fire!" William Butler Yeats
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2012
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Dodavatelské pracoviště: Katedra vizuální informatiky – Fakulta informatiky
Rozvrh
Út 8:00–9:50 C522
Předpoklady
SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 46 mateřských oborů, zobrazit
Cíle předmětu
At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
Osnova
  • Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
Metody hodnocení
Every student will either refer about some research topic or solve some project and present its solution.
Vyučovací jazyk
Angličtina
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2011
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Předpoklady
SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 46 mateřských oborů, zobrazit
Cíle předmětu
At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
Osnova
  • Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
Metody hodnocení
Every student will either refer about some research topic or solve some project and present its solution.
Vyučovací jazyk
Angličtina
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2010, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2010
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Rozvrh
Út 15:00–16:50 C522
Předpoklady
SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 44 mateřských oborů, zobrazit
Cíle předmětu
At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
Osnova
  • Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
Metody hodnocení
Every student will either refer about some research topic or solve some project and present its solution.
Vyučovací jazyk
Angličtina
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2009, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2009
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Rozvrh
Út 12:00–13:50 C522
Předpoklady
SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 44 mateřských oborů, zobrazit
Cíle předmětu
At the end of the course students should be able to read, understand, explain and evaluate [English] scientific papers, based on experience of practising these skills in this seminar.
Osnova
  • Topics and projects for every year will be posted on the web page of the course. On seminars students will refer about topics studied and they will be discussed thoroughly.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
Výukové metody
Lectures intermixed with seminar style discussions and brainstormings to solve given topics-projects. Students will be given readings as a preparation for the contact teaching hours.
Metody hodnocení
Every student will either refer about some research topic or solve some project and present its solution.
Vyučovací jazyk
Angličtina
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2008, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.

PV212 Readings in Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning

Fakulta informatiky
podzim 2008
Rozsah
0/2/0. 2 kr. (plus ukončení). Ukončení: k.
Vyučující
doc. RNDr. Petr Sojka, Ph.D. (přednášející)
Garance
prof. Ing. Jiří Sochor, CSc.
Katedra vizuální informatiky – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Petr Sojka, Ph.D.
Rozvrh
Út 11:00–12:50 C418
Předpoklady
SOUHLAS
Deep interest in areas of Digital Typography, Scientific Visualization, Information Retrieval and Machine Learning.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 37 mateřských oborů, zobrazit
Cíle předmětu
Students will be given readings and/or projects to read and/or solve. On seminars students will refer about topics studied and they will be discussed thoroughly.
Osnova
  • Topics and projects for every year will be posted on the web page of the course.
Literatura
  • WITTEN, I. H. a Eibe FRANK. Data mining : practical machine learning tools and techniques. 2nd ed. Amsterdam: Elsevier, 2005, xxxi, 525. ISBN 0120884070. info
  • KNUTH, Donald Ervin. Digital typography. Stanford: Center for the Study of Language and Information, 1999, xv, 685. ISBN 1575860112. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
  • Information retrieval :data structures & algorithms. Edited by William B. Frakes - Ricardo Baeza-Yates. Upper Saddle River: Prentice Hall, 1992, viii, 504. ISBN 0-13-463837-9. info
Metody hodnocení
Every student will either refer about some research topic or solve some project and present its solution.
Vyučovací jazyk
Angličtina
Informace učitele
http://www.fi.muni.cz/~sojka/PV212/
In the case all students enrolled will understand Czech, we may brainstorm in Czech. Course is especially useful to be enrolled by students preparing their thesis in the areas covered.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, jaro 2023, podzim 2023, jaro 2024, podzim 2024, jaro 2025.