FI:PV027 Optimization - Course Information
PV027 Optimization
Faculty of InformaticsSpring 2006
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Radka Svobodová, Ph.D. (lecturer)
- Guaranteed by
- prof. Ing. Václav Přenosil, CSc.
Department of Machine Learning and Data Processing – Faculty of Informatics
Contact Person: prof. RNDr. Luděk Matyska, CSc. - Timetable
- Mon 16:00–18:50 B411
- Prerequisites
- Prerequisites: mathematical analysis M001 Calculus II and linear algebra M004 Linear Algebra and Geometry II.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 30 student(s).
Current registration and enrolment status: enrolled: 0/30, only registered: 0/30, only registered with preference (fields directly associated with the programme): 0/30 - fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Informatics with another discipline (programme FI, B-BI)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-SO)
- Informatics with another discipline (programme FI, B-TV)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, M-IN)
- Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-TV)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS)
- Course objectives
- This is a basic course on methods of mathematical optimization and their practical use.
- Syllabus
- Unconstrained optimization: Nelder--Mead method, steepest descent, Newton methods, conjugate gradient, trust region methods. Least squares problem and analysis of experimental data.
- Linear programming, revised Simplex method, interior point methods. Applications of linear programming. Integer programming, branch and bound method. Dynamic programming.
- Nonlinear constrained optimization: penalty functions, quadratic programming, sequential quadratic programming method.
- Global optimization: simulated annealing, genetic algorithms, diffusion equation method.
- Literature
- FLETCHER, R. Practical methods of optimization. 1st ed. Chichester: John Wiley & Sons, 1987, xiv, 436. ISBN 0471915475. info
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
- Teacher's information
- http://ncbr.chemi.muni.cz/~n19n/vyuka/optimalizace
- Enrolment Statistics (Spring 2006, recent)
- Permalink: https://is.muni.cz/course/fi/spring2006/PV027