MB102 Differential and Integral Calculus

Faculty of Informatics
Spring 2013
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
Mgr. Milan Bačík (seminar tutor)
Mgr. Veronika Bernhauerová, Ph.D. (seminar tutor)
Mgr. Zdeňka Geršlová (seminar tutor)
Mgr. Jitka Hořanská (seminar tutor)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
Mgr. Jiří Janda, Ph.D. (seminar tutor)
Mgr. David Kruml, Ph.D. (seminar tutor)
Mgr. Miroslava Maračková (seminar tutor)
RNDr. Jiří Pecl, Ph.D. (seminar tutor)
Mgr. Vojtěch Růžička, Ph.D. (seminar tutor)
Dr. Alexandru Emil Stanculescu, Ph.D. (seminar tutor)
Mgr. Kateřina Štekovičová (seminar tutor)
doc. Lukáš Vokřínek, PhD. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (seminar tutor)
doc. RNDr. Michal Veselý, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Mon 10:00–11:50 D1
  • Timetable of Seminar Groups:
MB102/T01: Mon 14:00–15:55 Učebna S6 (20), J. Pecl
MB102/T02: Tue 8:00–9:55 Učebna S6 (20), Thu 8:00–9:55 Učebna S11 (58), Fri 8:00–9:55 Učebna S5 (31), J. Hořanská
MB102/T03: Wed 9:00–10:55 Učebna S8 (17), J. Pecl
MB102/01: Tue 12:00–13:50 G125, M. Chvátal
MB102/02: Tue 14:00–15:50 G125, M. Chvátal
MB102/03: Wed 8:00–9:50 G125, M. Maračková
MB102/04: Wed 16:00–17:50 G124, V. Růžička
MB102/05: Wed 12:00–13:50 G125, L. Vokřínek
MB102/06: Wed 18:00–19:50 G124, V. Růžička
MB102/07: Mon 12:00–13:50 G125, Z. Geršlová
MB102/08: Mon 14:00–15:50 G125, Z. Geršlová
MB102/09: Wed 8:00–9:50 G123, D. Kruml
MB102/10: Wed 10:00–11:50 G123, D. Kruml
MB102/11: Mon 16:00–17:50 G124, J. Janda
MB102/12: Mon 16:00–17:50 G125, V. Bernhauerová
MB102/13: Mon 18:00–19:50 G125, V. Bernhauerová
MB102/14: Mon 18:00–19:50 G124, L. Vokřínek
MB102/15: Fri 8:00–9:50 G123, M. Bačík
MB102/16: Thu 14:00–15:50 G125, A. Stanculescu
Prerequisites
!NOW( MB202 Calculus B ) && ! MB202 Calculus B
High school mathematics.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The second part of the block of four courses in Mathematics. In the entire course, the fundamentals of general algebra, linear algebra and mathematical analysis, including their applications in probability, statistics are presented. This semester is concerned with the basic concepts of Calculus including numerical and applied aspects. The students will be able to deal with both practical and theoretical tasks related to the derivative and integral (indefinite and definite integral) and use them for solving various applied problems and for the analysis of behavior of functions of one real variable. Students will understand the theory and use of infinite series of functions and power series.
Syllabus
  • 1. Creating the ZOO (4 weeks) – interpolation of data by polynomials and splines; scalar sequences,limits of sequenses and functions; continuity and derivatives; power series; elementary functions.
  • 2. Differential and integral Calculus (5 weeks) – higher order derivatives and Taylor expansion; extremes of functions; Riemann and Newton integration (area, volumes, etc.); numerical derivatives and integration.
  • 3. Continuous models (3 week) – aproximation of functions; Fourier series (including the numerical aspects); convolution (including the discrete version).
Literature
  • RILEY, K.F., M.P. HOBSON and S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004, 1232 pp. ISBN 0 521 89067 5. info
  • Matematická analýza pro fyziky. Edited by Pavel Čihák. Vyd. 1. Praha: Matfyzpress, 2001, v, 320 s. ISBN 80-85863-65-0. info
  • DOŠLÁ, Zuzana and Vítězslav NOVÁK. Nekonečné řady. Vyd. 1. Brno: Masarykova univerzita, 1998, 113 s. ISBN 8021019492. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB102!
Teaching methods
Lectures cover theory and illustrative solved problems. Seminar groups are devoted to solving problems.
Assessment methods
Lectures combining theory with explicit problem solving. Seminar groups devoted to solving numerical problems.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught each semester.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Autumn 2007, Spring 2008, Autumn 2008, Spring 2009, Autumn 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Spring 2012, Autumn 2012, Autumn 2013, Spring 2014, Autumn 2014, Spring 2015, Autumn 2015, Spring 2016, Autumn 2016, Spring 2017, Autumn 2017, Spring 2018, Autumn 2018, Spring 2019, Autumn 2019.
  • Enrolment Statistics (Spring 2013, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2013/MB102