FI:MB104 Discrete mathematics - Course Information
MB104 Discrete mathematics
Faculty of InformaticsSpring 2014
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Marek Filakovský, Ph.D. (seminar tutor)
Mgr. Bc. Tomáš Janík (seminar tutor)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. David Kruml, Ph.D. (seminar tutor)
Mgr. Bc. Jaromír Kuben (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
RNDr. Jiří Pecl, Ph.D. (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Mon 14:00–15:50 D3, Mon 14:00–15:50 D1
- Timetable of Seminar Groups:
MB104/T02: Thu 27. 2. to Sat 31. 5. Thu 8:00–9:35 Učebna S6 (20), M. Werl, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB104/T03: Tue 25. 2. to Sat 31. 5. Tue 9:40–11:15 Učebna S4 (35a), Fri 28. 2. to Sat 31. 5. Fri 13:30–15:10 Učebna S4 (35a), M. Werl, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
MB104/01: Wed 8:00–9:50 G331, M. Panák
MB104/02: Wed 10:00–11:50 G331, M. Panák
MB104/03: Thu 14:00–15:50 G331, D. Kruml
MB104/04: Wed 8:00–9:50 G125, D. Kruml
MB104/05: Thu 10:00–11:50 B410, M. Panák
MB104/06: Thu 12:00–13:50 G330, D. Kruml
MB104/07: Thu 16:00–17:50 G331, M. Filakovský
MB104/08: Thu 18:00–19:50 G331, M. Filakovský
MB104/09: Tue 16:00–17:50 G331, T. Janík
MB104/10: Tue 18:00–19:50 G331, T. Janík
MB104/11: Fri 12:00–13:50 G331, J. Komárková
MB104/12: Fri 14:00–15:50 G331, J. Komárková
MB104/13: Thu 16:00–17:50 G125, J. Kuben
MB104/14: Thu 18:00–19:50 G125, J. Kuben
MB104/15: Fri 8:00–9:50 G331, M. Werl
MB104/16: Fri 10:00–11:50 G330, M. Werl
MB104/17: Thu 14:00–15:50 G330, L. Mžourková Macálková - Prerequisites
- ! MB204 Discrete mathematics B && !NOW( MB204 Discrete mathematics B )
High school mathematics. Elementary knowledge of algebraic and combinatorial tasks (in the extent of MB101 or MB102). - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Bioinformatics (programme FI, B-AP)
- Economics (programme ESF, M-EKT)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Public Administration Informatics (programme FI, B-AP)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Course objectives
- At the end of this course, students should be able to:
understand and use methods of number theory to solve simple tasks;
understand approximately how results of number theory are applied in cryptography:
understand basic computational context;
model and solve simple combinatorial problems. - Syllabus
- Number theory:
- divisiblity (gcd, extended Euclid algorithm, Bezout); numerics of big numbers (gcd, modular exponential); prime numbers (properties, basic theorems of arithmetics, factorization, prime number testing (Rabin-Miller, Mersenneho prime numbers); congruences (basic properties, small Fermat theorem; Euler theorem; linear congruences; binomial congruences a primitiv roots; discrete logarithm;
- Number theory applications:
- short introduction to asymetric cryptography (RSA, DH, ElGamal, DSA, ECC); basic coding theory (linear and polynomial codes);
- Combinatorics:
- reminder of basics of combinatorics; generalized binomial theorem; combinatorial identities; Catalan numbers; formal power series; (ordinary) generating functions; exponential generating functions; probabilistic generating functions; solving combinatorial problems with the help of generating functions; solving basic reccurences (Fibonacci).
- Literature
- SLOVÁK, Jan, Martin PANÁK and Michal BULANT. Matematika drsně a svižně (Brisk Guide to Mathematics). 1st ed. Brno: Masarykova univerzita, 2013, 773 pp. ISBN 978-80-210-6307-5. Available from: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB104!
- Teaching methods
- There are standard two-hour lectures and standard tutorial.
- Assessment methods
- During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). In the seminar groups there are tests during the semester being written. The seminars are evaluated in total by max 5 points. The final practical written test for max 20 points. For successful examination (the grade at least E) the student needs to obtain 20 points or more.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2014, recent)
- Permalink: https://is.muni.cz/course/fi/spring2014/MB104