IA046 Vyčíslitelnost

Fakulta informatiky
jaro 2016
Rozsah
2/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
prof. RNDr. Luboš Brim, CSc. (přednášející)
Garance
prof. RNDr. Mojmír Křetínský, CSc.
Katedra teorie programování – Fakulta informatiky
Kontaktní osoba: prof. RNDr. Luboš Brim, CSc.
Dodavatelské pracoviště: Katedra teorie programování – Fakulta informatiky
Rozvrh
Čt 16:00–17:50 B410
Předpoklady
Jsou předpokládány znalosti odpovídající předmětům IB107 Vyčíslitelnost a složitost,M4155
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na hlubší studium výsledků teorie vyčíslitelnosti s důrazem na osvojení si používaných důkazových metod a technik.
Po skončení kurzu student porozumí základním výsledkům o vyčíslitelnosti nad nespočetnými množinami; bude schopen zhodnotit další poznatky o klasifikaci problémů, zejména aritmetické hierarchii a relativizované teorii vyčíslitelnosti.
Osnova
  • Riceovy věty.
  • Kreativní a produktivní množiny, m-ú\-pl\-né množiny a 1-úplné množiny, efektivně neoddělitelné množiny, jednoduché a imunní množiny.
  • Věta o rekurzi, aplikace v logice.
  • Primitivně rekurzívní, totálně rekurzívní a částečně rekurzívní funkce a predikáty, ekvivalence s třídou vyčíslitelných funkcí.
  • Aritmetické množiny a funkce, Goedelova-Rosserova věta o neúplnosti, druhá Goedelova věta o neúplnosti.
  • Relativizovaná teorie vyčíslitelnosti. Programy s orákulem.
  • Kleeneho hierarchie. T-redukce, aritmetická hierarchie, tt-redukovatelnost.
  • Postův problém.
  • Analytická hierarchie.
  • Vyčíslitelnost nespočetných množin. Úplné částečně uspořádané množiny, domény.
Literatura
  • Theory of Recursive Functions and Effective Computability. Edited by Hartley Rogers. Cambridge: Massachusetts Institute of Technology, 1987, 482 s. ISBN 0262680521. info
Výukové metody
přednáška, domácí úkoly
Metody hodnocení
Zkouška je písemná. Při zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
Informace učitele
http://www.fi.muni.cz/usr/brim/IA046
Další komentáře
Studijní materiály
Předmět je vyučován jednou za dva roky.
Předmět je zařazen také v obdobích podzim 2002, jaro 2004, jaro 2005, jaro 2006, jaro 2008, jaro 2010, jaro 2012, jaro 2014, jaro 2018, jaro 2021, jaro 2022.