FI:MA012 Statistika II - Informace o předmětu
MA012 Statistika II
Fakulta informatikypodzim 2018
- Rozsah
- 2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
- Vyučující
- Mgr. Ondřej Pokora, Ph.D. (přednášející)
Mgr. Eva Janoušková, Ph.D. (cvičící)
Mgr. et Mgr. Daniela Kuruczová, Ph.D. (cvičící) - Garance
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta - Rozvrh
- Čt 12:00–13:50 A318
- Rozvrh seminárních/paralelních skupin:
MA012/02: Po 17. 9. až Po 10. 12. Po 10:00–11:50 B311, D. Kuruczová - Předpoklady
- Předpokládá se znalost diferenciálního a integrálního počtu jedné a více proměnných, základní znalosti z lineární algebry a znalosti pravděpodobnosti a statistiky v rozsahu předmětu MV011 Statistika I.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná informatika (program FI, N-AP)
- Bezpečnost informačních technologií (angl.) (program FI, N-IN)
- Bezpečnost informačních technologií (program FI, N-IN)
- Bioinformatika (program FI, N-AP)
- Informační systémy (program FI, N-IN)
- Informatika (angl.) (program FI, D-IN4)
- Informatika (program FI, D-IN4)
- Paralelní a distribuované systémy (program FI, N-IN)
- Počítačová grafika (program FI, N-IN)
- Počítačové sítě a komunikace (program FI, N-IN)
- Počítačové systémy a technologie (angl.) (program FI, D-IN4)
- Počítačové systémy a technologie (program FI, D-IN4)
- Počítačové systémy (program FI, N-IN)
- Programovatelné technické struktury (angl.) (program FI, N-IN)
- Programovatelné technické struktury (program FI, N-IN)
- Služby - výzkum, řízení a inovace (angl.) (program FI, N-AP)
- Služby - výzkum, řízení a inovace (program FI, N-AP)
- Sociální informatika (program FI, B-AP)
- Teoretická informatika (program FI, N-IN)
- Učitelství výpočetní techniky pro střední školy (program FI, N-SS) (2)
- Umělá inteligence a zpracování přirozeného jazyka (program FI, N-IN)
- Zpracování obrazu (program FI, N-AP)
- Cíle předmětu
- Po absolvování tohoto předmětu budou studenti schopni: aplikovat pokročilé metody matematické statistiky na reálné datové soubory; porozumět příslušným algoritmům a výpočetním postupům; statisticky analyzovat vícerozměrná data; využít pro praktickou práci volně dostupný software R.
- Osnova
- Jednofaktorová a dvoufaktorová analýza rozptylu (ANOVA);
- Neparametrické testy hypotéz;
- Testy dobré shody;
- Mnohonásobná lineární regrese;
- Korelační analýza, korelační koeficienty;
- Autokorelace, multikolinearita;
- Zobecněné lineární modely (GLM);
- Analýza hlavních komponent (PCA);
- ROC křivky, rozhodování;
- Literatura
- ANDĚL, J. Základy matematické statistiky. Praha: MFF UK, 2005. info
- RAO, C. Radhakrishna. Lineární metody statistické indukce a jejich aplikace. Translated by Josef Machek. Vyd. 1. Praha: Academia, 1978, 666 s. URL info
- BERNSTEIN, Stephen a Ruth BERNSTEIN. Schaum's outline of theory and problems of elements of statistics : descriptive statistics and probability. New York, N.Y.: McGraw-Hill, 1999, vii, 354. ISBN 0070050236. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Výukové metody
- přednášky, cvičení
- Metody hodnocení
- Výuka probíhá každý týden v rozsahu 2 hodiny přednášek, 2 hodiny cvičení. Série praktických úloh v R ve cvičení. Vyplňování odpovědníků v průběhu semestru a řešení praktických úloh na konci cvičení. Zkouška je písemná s krátkým ústním pohovorem o zpracovaném projektu. Pro úspěšné absolvování předmětu je třeba v součtu získat alespoň 50 % bodů.
- Informace učitele
- Do cvičení v nepočítačových učebnách je nutné, aby si studenti nosili vlastní notebooky. Většina cvičení bude spočívat v řešení praktických úloh v softwaru R.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2018, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2018/MA012