FI:MV008 Algebra I - Informace o předmětu
MV008 Algebra I
Fakulta informatikypodzim 2018
- Rozsah
- 2/2. 4 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Ondřej Klíma, Ph.D. (přednášející)
doc. Mgr. Michal Kunc, Ph.D. (přednášející)
Mgr. Radka Penčevová (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta - Rozvrh
- Po 17. 9. až Po 10. 12. Po 12:00–13:50 B204
- Rozvrh seminárních/paralelních skupin:
MV008/02: Čt 12:00–13:50 B204, R. Penčevová - Předpoklady
- ( MB005 Základy matematiky || MB101 Lineární modely || MB201 Lineární modely B ) && ! MB008 Algebra I
Znalost základů teorie čísel v rozsahu předmětu MB104. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Informatika ve veřejné správě (program FI, B-AP)
- Matematická informatika (program FI, B-IN)
- Paralelní a distribuované systémy (program FI, B-IN)
- Počítačové sítě a komunikace (program FI, B-IN)
- Programovatelné technické struktury (program FI, N-IN)
- Služby - výzkum, řízení a inovace (program FI, N-AP)
- Sociální informatika (program FI, B-AP)
- Umělá inteligence a zpracování přirozeného jazyka (program FI, B-IN)
- Cíle předmětu
- Po absolvování tohoto kurzu budou studenti schopni: používat základní pojmy teorie monoidů, grup a okruhů; definovat a chápat základní vlastnosti těchto struktur; dokazovat jednoduchá algebraická tvrzení; aplikovat teoretické výsledky při algoritmickém počítání s čísly, zobrazeními a polynomy.
- Výstupy z učení
- Po absolvování tohoto kurzu budou studenti schopni: používat základní pojmy teorie monoidů, grup a okruhů; definovat a chápat základní vlastnosti těchto struktur; dokazovat jednoduchá algebraická tvrzení; aplikovat teoretické výsledky při algoritmickém počítání s čísly, zobrazeními a polynomy.
- Osnova
- Pologrupy: monoidy, podpologrupy a podmonoidy, homomorfismy a izomorfismy, Cayleyho reprezentace, přechodové monoidy automatů, součiny pologrup, invertibilní prvky.
- Grupy: základní vlastnosti, podgrupy, homomorfismy a izomorfismy, cyklické grupy, Cayleyho reprezentace, součiny grup, rozklad grupy podle podgrupy, Lagrangeova věta, normální podgrupy, faktorizace grup.
- Polynomy: polynomy nad komplexními, reálnými, racionálními a celými čísly, polynomy nad zbytkovými třídami, dělitelnost, nerozložitelné polynomy, kořeny, minimální polynomy čísel.
- Okruhy: základní vlastnosti, podokruhy, homomorfismy a izomorfismy, součiny okruhů, obory integrity, tělesa, podílová tělesa, dělitelnost, polynomy nad tělesem, ideály, faktorové okruhy, rozšíření těles, konečná tělesa.
- Literatura
- ROSICKÝ, J. Algebra, grupy a okruhy. 3. vyd. Brno: Masarykova univerzita, 2000, 140 s. ISBN 80-210-2303-1. info
- PROCHÁZKA, Ladislav. Algebra. 1. vyd. Praha: Academia, 1990, 560 s. info
- Výukové metody
- Přednášky: teoretická výuka. Cvičení: řešení konkrétních problémů s cílem porozumět základním pojmům a tvrzením.
- Metody hodnocení
- Písemná zkouška: je nutné získat alespoň 50 ze 100 bodů. Po úspěšném absolvování písemné zkoušky je možné si získané hodnocení vylepšit absolvováním ústního přezkoušení.
- Navazující předměty
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
Předmět byl dříve vypisován pod kódem MB008.
- Statistika zápisu (podzim 2018, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2018/MV008