FSS:PSY117 Statistics - Course Information
PSY117 Statistical Analysis in Psychology
Faculty of Social StudiesSpring 2008
- Extent and Intensity
- 1/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Stanislav Ježek, Ph.D. (lecturer)
Mgr. Jan Širůček, Ph.D. (lecturer)
Mgr. Tomáš Protivínský (seminar tutor) - Guaranteed by
- doc. Mgr. Stanislav Ježek, Ph.D.
Department of Psychology – Faculty of Social Studies
Contact Person: doc. Mgr. Stanislav Ježek, Ph.D. - Timetable
- Wed 8:00–9:40 Aula
- Timetable of Seminar Groups:
PSY117/B: each even Wednesday 12:00–13:30 U23, S. Ježek
PSY117/C: each odd Wednesday 10:00–11:40 U23, J. Širůček
PSY117/D: each odd Wednesday 12:00–13:30 U23, J. Širůček - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Psychology (programme FSS, B-HE)
- Psychology (programme FSS, B-HS)
- Psychology (programme FSS, B-KS)
- Psychology (programme FSS, B-MS)
- Psychology (programme FSS, B-PL)
- Psychology (programme FSS, B-PS)
- Psychology (programme FSS, B-SO)
- Psychology (programme FSS, B-SP)
- Course objectives (in Czech)
- Cílem kurzu je seznámit studenty se základy statistiky používané v psychologickém výzkumu. Studenti získají porozumění základním prvkům statistiky a dovednost je aktivně i pasivně používat. Studenti získají dovednost připravit data pro statistické zpracování, spočítat základní statistiky, otestovat běžné typy hypotéz. Kurz klade důraz i na komunikaci, tj. slovní popis výsledků i schopnost porozumět takto popsaným výsledkům v empirických kvantitativních studiích. V rámci kurzu budou studenti seznamováni paralelně s českou i anglickou terminologií, aby byli po skončení kurzu schopni dále studovat a používat internetové zdroje.
- Syllabus (in Czech)
- 1. Proměnné Data, proměnné, úrovně měření, kvalita měření, organizace dat, kontrola dat. Seminární témata: tvorba datové matice (v Excelu a SPSS), kódování proměnných 2. Zobrazování dat, četnosti, distribuce Tabelace dat, šíře intervalů, minimum, maximum, odlehlá hodnota (outlier), absolutní a relativní četnosti (frekvence), kumulativní absolutní a relativní četnosti, rozložení (rozdělení) četností(dat), tvary rozložení (normální, bimodální, uniformní, pozitivně zešikmené, negativně zešikmené), normální (Gaussovo) rozložení, velikosti oblastí pod křivkou normálního rozložení, Poissonovo rozložení, graf absolutních a relativních četností, sloupcový graf, histogram 3. Míry centrální tendence a variability Modus, medián, průměr, vážený průměr, vhodnost použití různých měr centrální tendence, (variační) rozpětí, kvartilové rozpětí, směrodatná odchylka (populační, výběrová), rozptyl, vliv přičítání konstanty a násobení konstantou na m a s, z-skóry a další standardní skóry (T, IQ), percentily, šikmost, špičatost, krabicový graf s anténami 4. Vztahy mezi proměnnými Korelace – Pearsonův, Spearmannův, Kendallův koeficient a jejich vlastnosti. Koeficient determinace, kovariance. Kontingenční tabulka, marginální četnosti. Lineární vztah, monotónní vztah, pozitivní a negativní vztah. Těsnost vztahu. Bodový graf. 5. Lineární regrese Statistická predikce, lineární vs. nelineární regrese, lineární a kvadratická funkce, odhad, modelování, regrese, reziduum, prediktor, závislá a nezávislá proměnná, zdroje variability, stanovení regresní přímky metodou nejmenších čtverců, regresní rozptyl a reziduální rozptyl, koeficient determinace jako ukazatel úspěšnosti regrese, homoskedascita, mnohočetná (mnohonásobná) regrese, logistická regrese 6. Pravděpodobnost Pojetí pravděpodobnosti, počítání s pravděpodobnostmi, náhodné jevy, podmíněné pravděpodobnosti, Bayesův teorém, binomické rozložení, normální rozdělení a další běžná rozložení. 7. Statistická indukce, intervalové odhady Vzorek(výběr), statistiky vs. parametry, výběrová rozložení, centrální limitní teorém, směrodatná chyba (průměru), výběrové rozložení průměru, relativní četnosti, rozptylu, bodové vs. intervalové odhady. 8. Testování hypotéz Statistická(nulová) hypotéza, výzkumná (alternativní) hypotéza, jednostranná vs. oboustranná hypotéza(test); Bayesovský přístup k testování hypotéz vs. Fisher-Pearson-Neymanovský (tradiční) přístup, úroveň(hladina) statistické významnosti, chyba I. a II. typu a jejich pravděpodobnost, (statistická) síla testu, jednovýběrový t-test, dvouvýběrový t-test (pro nezávislé výběry), párový t-test (z-test), Levenův test, testování korelačního koeficientu, velikost efektu, Cohenovo d, transformace z d na r a naopak 9. Testy pro nominální a ordinální proměnné Parametrické vs. neparametrické testy, znaménkový test, test relativních četností, test dobré shody, závislost kategoriálních proměnných, Wilcoxonovy testy, Mann-Whitney U, 10. Analýza rozptylu Problém s prováděním většího počtu testů, rybaření v datech, Bonferroniho korekce, princip analýzy rozptylu, rozptyl mezi skupinami , rozptyl uvnitř skupin, statistika F, analýza rozptylu s jedním faktorem (one-way), předpoklady analýzy rozptylu, post-hoc testy, velikost účinku, interakce faktorů 11. Úvod do multivariačních metod Účel, princip a předpoklady: mnohonásobné lineární regrese, vícefaktoriální analýzy rozptylu, faktorové analýzy (analýzy hlavních komponent), shlukové analýzy, analýzy strukturních modelů (LISREL)
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
General note: Cvičení je děleno na tři skupiny. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.fss.muni.cz/psych/studium.html
- Enrolment Statistics (Spring 2008, recent)
- Permalink: https://is.muni.cz/course/fss/spring2008/PSY117