FSS:PSY117 Statistická analýza dat - Informace o předmětu
PSY117 Statistická analýza dat
Fakulta sociálních studiíjaro 2011
- Rozsah
- 1/1/0. 5 kr. Ukončení: zk.
- Vyučující
- doc. Mgr. Stanislav Ježek, Ph.D. (přednášející)
Mgr. Jan Širůček, Ph.D. (přednášející)
Mgr. Pavol Hašan, Ph.D. (cvičící)
doc. Mgr. et Mgr. Jan Šerek, Ph.D. (cvičící)
Bc. Dana Peňázová (pomocník) - Garance
- doc. Mgr. Stanislav Ježek, Ph.D.
Katedra psychologie – Fakulta sociálních studií
Kontaktní osoba: doc. Mgr. Stanislav Ježek, Ph.D. - Rozvrh
- St 8:00–9:40 P31 Posluchárna A. I. Bláhy
- Rozvrh seminárních/paralelních skupin:
PSY117/SB: St 11:00–11:40 U35, S. Ježek
PSY117/SC: St 12:00–12:40 U35, J. Širůček
PSY117/SD: St 13:00–13:40 U35, J. Širůček - Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
- Mateřské obory/plány
- Psychologie (program FSS, B-HE) (2)
- Psychologie (program FSS, B-HS)
- Psychologie (program FSS, B-KS) (3)
- Psychologie (program FSS, B-KSK)
- Psychologie (program FSS, B-MS) (3)
- Psychologie (program FSS, B-MSK)
- Psychologie (program FSS, B-PL) (3)
- Psychologie (program FSS, B-PLK)
- Psychologie (program FSS, B-PS) (5)
- Psychologie (program FSS, B-PSK)
- Psychologie (program FSS, B-SO) (3)
- Psychologie (program FSS, B-SOK)
- Psychologie (program FSS, B-SP) (3)
- Psychologie (program FSS, B-SPK)
- Cíle předmětu
- Cílem kurzu je seznámit studenty se základy statistiky používané v psychologickém výzkumu. Studenti získají porozumění základním prvkům statistiky a dovednost je aktivně i pasivně používat. Studenti získají dovednost připravit data pro statistické zpracování, spočítat základní statistiky, otestovat běžné typy hypotéz. Kurz klade důraz i na komunikaci, tj. slovní popis výsledků i schopnost porozumět takto popsaným výsledkům v empirických kvantitativních studiích. V rámci kurzu jsou studenti seznamováni paralelně s českou i anglickou terminologií, aby byli po skončení kurzu schopni dále studovat a používat internetové zdroje.
- Osnova
- 1. Proměnné Data, proměnné, úrovně měření, kvalita měření, organizace dat, kontrola dat. Seminární témata: tvorba datové matice (v Excelu a SPSS), kódování proměnných 2. Zobrazování dat, četnosti, distribuce Tabelace dat, šíře intervalů, minimum, maximum, odlehlá hodnota (outlier), absolutní a relativní četnosti (frekvence), kumulativní absolutní a relativní četnosti, rozložení (rozdělení) četností(dat), tvary rozložení (normální, bimodální, uniformní, pozitivně zešikmené, negativně zešikmené), normální (Gaussovo) rozložení, velikosti oblastí pod křivkou normálního rozložení, Poissonovo rozložení, graf absolutních a relativních četností, sloupcový graf, histogram 3. Míry centrální tendence a variability Modus, medián, průměr, vážený průměr, vhodnost použití různých měr centrální tendence, (variační) rozpětí, kvartilové rozpětí, směrodatná odchylka (populační, výběrová), rozptyl, vliv přičítání konstanty a násobení konstantou na m a s, z-skóry a další standardní skóry (T, IQ), percentily, šikmost, špičatost, krabicový graf s anténami 4. Vztahy mezi proměnnými Korelace – Pearsonův, Spearmannův, Kendallův koeficient a jejich vlastnosti. Koeficient determinace, kovariance. Kontingenční tabulka, marginální četnosti. Lineární vztah, monotónní vztah, pozitivní a negativní vztah. Těsnost vztahu. Bodový graf. Parciální korelace. 5. Lineární regrese Statistická predikce, lineární vs. nelineární regrese, lineární a kvadratická funkce, odhad, modelování, regrese, reziduum, prediktor, závislá a nezávislá proměnná, zdroje variability, stanovení regresní přímky metodou nejmenších čtverců, regresní rozptyl a reziduální rozptyl, koeficient determinace jako ukazatel úspěšnosti regrese, homoskedascita, mnohočetná (mnohonásobná) regrese, logistická regrese 6. Pravděpodobnost Pojetí pravděpodobnosti, počítání s pravděpodobnostmi, náhodné jevy, podmíněné pravděpodobnosti, Bayesův teorém, binomické rozložení, normální rozdělení a další běžná rozložení. 7. Statistická indukce, intervalové odhady Vzorek(výběr), statistiky vs. parametry, výběrová rozložení, centrální limitní teorém, směrodatná chyba (průměru), výběrové rozložení průměru, relativní četnosti, rozptylu, bodové vs. intervalové odhady. 8. Testování hypotéz Statistická(nulová) hypotéza, výzkumná (alternativní) hypotéza, jednostranná vs. oboustranná hypotéza(test); Bayesovský přístup k testování hypotéz vs. Fisher-Pearson-Neymanovský (tradiční) přístup, úroveň(hladina) statistické významnosti, chyba I. a II. typu a jejich pravděpodobnost, (statistická) síla testu, jednovýběrový t-test, dvouvýběrový t-test (pro nezávislé výběry), párový t-test (z-test), Levenův test, testování korelačního koeficientu, velikost efektu, Cohenovo d, transformace z d na r a naopak 9. Testy pro nominální a ordinální proměnné Parametrické vs. neparametrické testy, znaménkový test, test relativních četností, test dobré shody, závislost kategoriálních proměnných, Wilcoxonovy testy, Mann-Whitney U, 10. Analýza rozptylu Problém s prováděním většího počtu testů, rybaření v datech, Bonferroniho korekce, princip analýzy rozptylu, rozptyl mezi skupinami , rozptyl uvnitř skupin, statistika F, analýza rozptylu s jedním faktorem (one-way), předpoklady analýzy rozptylu, post-hoc testy, velikost účinku, interakce faktorů
- Literatura
- Výukové metody
- přednáška, demonstrace řešení problémů, skupinová diskuze, kritické čtení a psaní recenze, domácí cvičení, online diskuze
- Metody hodnocení
- 3 průběžné testy (1/3 celkového hodnocení), 1 seminární práce (1/9 celkového hodnocení), závěrečná zkouška (5/9 celkového hodnocení)
- Navazující předměty
- Informace učitele
- http://www.fss.muni.cz/psych/studium.html
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
Cvičení je děleno na tři skupiny. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (jaro 2011, nejnovější)
- Permalink: https://is.muni.cz/predmet/fss/jaro2011/PSY117