Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2021
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 14 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je seznámit studenty s principy statistického zpracování dat v oblasti biologických dat od přípravy experimentu, přes sběr dat a jejich vizualizaci až po popisnou statistiku a metodiku testování statistických hypotéz.
- Výstupy z učení
- V závěru kurzu jsou studenti schopni:
Definovat strukturu datového souboru pro statistickou analýzu;
Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat;
Identifikovat vhodné metody popisné analýzy dat;
Fomulovat hypotézy statistické analýzy dat;
Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz;
Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře);
Posoudit vhodnost aplikace různých statistických metod na různé typy dat - Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Prezentace prostřednictvím Microsoft Teams podporované Power Pointovými prezentacemi, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- V podzimním semestru 2020 proběhne s rozvrhem synchronní výuka přes MS Teams.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2020
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 17:00–19:50 prace doma
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 14 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je seznámit studenty s principy statistického zpracování dat v oblasti biologických dat od přípravy experimentu, přes sběr dat a jejich vizualizaci až po popisnou statistiku a metodiku testování statistických hypotéz.
- Výstupy z učení
- V závěru kurzu jsou studenti schopni:
Definovat strukturu datového souboru pro statistickou analýzu;
Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat;
Identifikovat vhodné metody popisné analýzy dat;
Fomulovat hypotézy statistické analýzy dat;
Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz;
Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře);
Posoudit vhodnost aplikace různých statistických metod na různé typy dat - Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Prezentace prostřednictvím Microsoft Teams podporované Power Pointovými prezentacemi, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- V podzimním semestru 2020 proběhne s rozvrhem synchronní výuka přes MS Teams.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2019
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 14 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je seznámit studenty s principy statistického zpracování dat v oblasti biologických dat od přípravy experimentu, přes sběr dat a jejich vizualizaci až po popisnou statistiku a metodiku testování statistických hypotéz.
- Výstupy z učení
- V závěru kurzu jsou studenti schopni:
Definovat strukturu datového souboru pro statistickou analýzu;
Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat;
Identifikovat vhodné metody popisné analýzy dat;
Fomulovat hypotézy statistické analýzy dat;
Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz;
Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře);
Posoudit vhodnost aplikace různých statistických metod na různé typy dat - Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2018
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Po 17. 9. až Pá 14. 12. St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2017
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Po 18. 9. až Pá 15. 12. St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2016
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Po 19. 9. až Ne 18. 12. St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2015
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2014
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Fikejs (pomocník)
Mgr. Ivana Kupčíková, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2013
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Po 16. 9. až Pá 6. 12. St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2012
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 12 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2011
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D. - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 12 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2010
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D. - Rozvrh
- St 17:00–19:50 B11/132
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2009
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D. - Rozvrh
- St 17:00–19:50 A,01026
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2008
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Tomáš Pavlík, Ph.D. (cvičící) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- St 17:00–19:50 A,01026
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci. Po absovování předmětu bude student schopen korektně provádět statistickou analýzu biologických dat.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2007
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník)
RNDr. Eva Gelnarová (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- St 17:00–19:50 A,01026
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2006
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník)
RNDr. Eva Gelnarová (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- St 17:00–19:50 A,01026
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2005
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník)
RNDr. Eva Gelnarová (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- St 16:00–19:50 U-aula
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2004
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- St 16:00–19:50 P0
- Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2003
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2002
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2011 - akreditace
Údaje z období podzim 2011 - akreditace se nezveřejňují
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D. - Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2010 - akreditace
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D. - Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- V závěru kurzu jsou studenti schopni: Definovat strukturu datového souboru pro statistickou analýzu; Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat; Identifikovat vhodné metody popisné analýzy dat; Fomulovat hypotézy statistické analýzy dat; Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz; Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře); Posoudit vhodnost aplikace různých statistických metod na různé typy dat
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- Literatura
- Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
- Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
- Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
Bi5040 Biostatistika - základní kurz
Přírodovědecká fakultapodzim 2007 - akreditace
- Rozsah
- 3/0/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník)
RNDr. Eva Gelnarová (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nejsou - jde o základní kurz.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je úvodem do aplikované analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
- Osnova
- 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů.
- 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data.
- 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody.
- 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací.
- 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě l.
- 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody.
- 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností.
- 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace.
- 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu.
- 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii.
- 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
- 12. Stručný přehled vícerozměrných metod v biologii a ekologii. Aplikace statistiky v ekotoxikologii, modelování vlastností makromolekul. Význam analýzy dat při hodnocení rizik.Přehled literatury a časopisů zabývajících se biostatistickými metodami. Stručný přehled softwarových produktů vhodných pro zpracování biologických dat.
- Literatura
- Zar, J.H. (1994) Biostatistical methods. Prentice Hall, London. 2nd ed.
- G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
- Navazující předměty
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Bi5180 Genetika kvantitativních znaků
Bi3060 && Bi5040 || E5540 - Bi7920 Zpracování biologických dat
Bi5040||Bi5560 - Bi7921 Pokročilé zpracování biologických dat
(Bi5040||Bi5560) && Bi7920 - E7490 Pokročilé neparametrické metody
Bi5040 || Bi5045 - E7528 Analýza genomických a proteomických dat
(Bi5040 || Bi5045 || Bi5046 || E5046) && E8600 && E7527 && Bi4010 && E0034
- Bi5180 Genetika kvantitativních znaků
- Statistika zápisu (nejnovější)