Bi5050 Structural virology
Faculty of ScienceAutumn 2018
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 1. 10. to Fri 14. 12. Wed 14:00–16:50 B11/335
- Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Bi5050 Structural virology
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Fri 15:00–17:50 B11/306
- Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
or
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught once in two years.
Bi5050 Structural virology
Faculty of ScienceAutumn 2024
The course is not taught in Autumn 2024
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2025
The course is not taught in Spring 2025
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2024
The course is not taught in Spring 2024
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of ScienceAutumn 2023
The course is not taught in Autumn 2023
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2023
The course is not taught in Spring 2023
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of ScienceAutumn 2022
The course is not taught in Autumn 2022
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2022
The course is not taught in Spring 2022
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of Scienceautumn 2021
The course is not taught in autumn 2021
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2021
The course is not taught in Spring 2021
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of ScienceAutumn 2020
The course is not taught in Autumn 2020
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2020
The course is not taught in Spring 2020
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of ScienceAutumn 2019
The course is not taught in Autumn 2019
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2019
The course is not taught in Spring 2019
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of Sciencespring 2018
The course is not taught in spring 2018
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of Scienceautumn 2017
The course is not taught in autumn 2017
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2017
The course is not taught in Spring 2017
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of ScienceAutumn 2016
The course is not taught in Autumn 2016
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2016
The course is not taught in Spring 2016
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
Bi5050 Structural virology
Faculty of ScienceAutumn 2015
The course is not taught in Autumn 2015
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- (Bi2060 Základy mikrobiologie, Bi4010 Základy molekulární biologie)
nebo
(Mikrobiologie Bi5710 a Molekularni biologie Bi4020)
Přednáška je určena studujícím biologických oborů (obecná biologie, molekulární biologie a genetika, speciální biologie), případně dalším potenciálním zájemcům o virologii. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Cílem předmětu je seznámit studenty se strukturou virů, způsoby doručení virového genomu do buněk, replikací genomu, šíření virů mezi organismy, virovou evolucí a způsoby jak viry způsobují onemocnění. Tento kurz je zaměřen na strukturní a molekulární aspekty virologie. Po jeho abslovování budou studenti rozumět základním mechanismům zajišťujícím úspěšný průběh virového replikačního cyklu. Kurz je zaměřen primárně na lidské a zvířecí viry, ale zběžně se věnuje také bakteriofágům. Studenti se také seznámí s důležitými aplikacemi virologie zahrnujícími využití virů v genové terapii, vývoj protivirových vakcín, použití „onkolytických“ virů k léčbě nádorových onemocnění a použití bakteriofágů v boji proti bakteriálním onemocněním. Budeme se také zabývat možnostmi vzniku nových virů a potenciálním využitím virů v bioterorismu.
Studenti budou mít na konci kurzu následující znalosti a dovednosti:
• Pochopení, co je to virus. Budou mít vlastní názor na to, jestli jsou viry živé, nebo ne.
• Pochopení základních virologických konceptů spojených s mechanismy vstupu virů do buněk, replikace, sestavování virových partikulí, uvolnění dceřinných virionů z buněk a virové struktury.
• Budou schopni popsat, jak jednoduchost virů umožnila zásadní objevy v biologii jako například:
o objev, že geny jsou tvořeny DNA
o identifikaci “vnitřního místa pro vstup ribozomu” (internal ribosome entry site – IRES
o objev zesilovačů transkripce (transcription enhancers)
o objev transkripčních faktorů (transcription factors)
• Budou umět kriticky analyzovat obsah vědeckých článků.
• Budou mít základní přehled v taxonomii virů. Budou znát viry, které způsobují závažná lidská onemocnění a viry, které jsou původci onemocnění hospodářských zvířat a rostlin. - Syllabus
- Week 1
- Introduction
- - viruses and their importance
- - methods used in virology
- - introduction to virus structure
- • Read chapters 1-2 in the textbook.
- • Lecture reading: Caspar D. L. D. and Klug A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia Quantitative Biology, 27, 1–24
- Week 2
- Virus structure (continued), virus transmission
- - Icosahedral viruses and quasi-equivalence (Caspar Klug theory)
- - Enveloped viruses and viruses with complex structures
- • Read chapters 3 and 4 from the textbook.
- • Lecture reading: Rossmann M. G. et al. (2005) Combining X-ray crystallography and electron microscopy. Structure, 13, 355–362
- Week 3
- Attachment and entry of viruses into cells; virus transcription, translation and transport of virus macromolecules within a cell
- - Cell entry of enveloped viruses
- - Cell entry of naked viruses
- - Various methods that viruses use to ensure translation of their genes
- • Read chapters 5 and 6 from the textbook.
- • Lecture reading: Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
- Week 4
- Virus genome replication, impact of virus infection of cell architecture; assembly and exit of virions from cells
- - Locations within cells where replication takes place
- - Reverse transcription
- - Roles of host and virus proteins in replication
- - Assembly mechanisms of virus capsids
- - Mechanisms by which viruses exit the cells
- - Origins of membranes that are components of virions
- • Read chapters 7 and 8 from the textbook.
- • Lecture reading: Steven A. C. et al. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 15, 227–236
- Week 5
- Outcomes of infection for the host; immune response; classification and nomenclature of viruses; Herpesviruses
- - Components of innate and adaptive immunity in vertegrates
- - Immunity at cellular level
- - Baltimore classification of viruses
- - Structure of HSV virion, genome, and replication cycle
- - Herpesvirus persistence
- • Read chapters 9-11 from the textbook.
- • Lecture reading: Mettenleiter T. C., Klupp B. G. and Granzow H. (2006) Herpesvirus assembly: a tale of two membranes. Current Opinion in Microbiology, 9, 423–429
- • First research assignment is due
- Week 6
- Parvoviruses, Reoviruses
- - Structure of parvovirus virions, main features of parvovirus genomes and replication
- - Differences between autonomous and defective parvoviruses
- - Structure of rotavirus virions, genome, and mechanism of replication
- - How rotaviruses cause disease.
- • Read chapters 12 and 13 from the textbook.
- • Lecture reading: Hueffer K. and Parrish C. R. (2003) Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology, 6, 392–398
- Week 7
- Picornaviruses; Rhabdoviruses
- - Structure of picornavirus virion, genome and, determinants of picornavirus replication
- - Picornavirus recombination, experimental systems for picornavirus studies
- - Structure of rhabdovirus virions, genome, and mechanism of replication.
- - Use of rhabdovirus reverse genetics.
- • Read chapters 14 and 15 from the textbook.
- • Lecture reading: Xing L. et al. (2003) Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. Journal of Virology, 77, 6101–6107
- Week 8
- Retroviruses + HIV; Hepadnaviruses
- - Structure of retrovirus virion, genome and, mechanism of retrovirus replication
- - Endogenous retroviruses
- - Effects of HIV infection on the host, methods for HIV prevention
- - Hepadnavirus virion, genome, and mechanism of replication.
- - Methods for HBV prevention
- • Read chapters 16, 17 and, 18 from the textbook.
- • Lecture reading: Zhu P. et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 441, 847–852
- Week 9
- Bacteriophages
- - Replication cycle and gene expression control of coliphages
- - Virion structure and infection process of dsRNA phages
- - Virion structure and replication cycle of T4 and T7 phages
- - Regulation of switching between lytic cycle and lysogeny
- - Use of phages in medicine and biotechnology
- • Read chapter 19 from the textbook.
- • Lecture reading: Leiman P.G. et al. (2003) Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60, 2356–2370
- • Second research assignment is due
- Week 10
- Origins and evolution of viruses; emerging viruses; bioterorism
- - Basic theories on the origins of viruses
- - Virus evolution through mutation, recombination and, reassortment
- - Co-evolution of viruses and their hosts
- - What is emerging virus?
- - Measures that can be taken to prevent and contain outbreaks of infectious diseases.
- • Read chapters 20 and 21 from the textbook.
- • Lecture reading: Froissart R. et al. (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biology, 3, e89
- Week 11
- Viruses and cancer; virus persistence; vaccines
- - Characteristics of viruses that are associated with cancers
- - Mechanisms for virus induction of cancer
- - Examples of physical and chemical agents that affect virus survival
- - Reasons to preserve and destroy viruses
- - How vaccination helps to control virus diseases
- - Types of vaccines
- - Virus-based vaccines against non-viral disorders
- • Read chapters 22, 23 and 24 from the textbook.
- • Lecture reading: Longworth M. S. and Laimins L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68, 362–372
- Week 12
- Anti-viral drugs; satellite viruses, viroids, virusoids, satellite virophages, prions
- - Modes of action of antiviral drugs
- - Origins of virus resistance to drugs
- - Description and charactirization of sub-viral infectious agents
- • Read chapters 25 and 26 from the textbook.
- • Lecture reading: Plevka P. et al. (2013) Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 110(14):5463-7
- Literature
- recommended literature
- • John Carter and Venetia Saunders. (2007) “Virology : principles and applications”, 2nd edition; ISBN: 978-0-470-02386-0 (HB); John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Teaching methods
- The course will be presented as a series of lectures presented with the aid of PowerPoint slides.
- Assessment methods
- Final grade will be calculated according to Table 1 based on following performance indicators:
Two Mini-Research Assignments (each of them is worth 10% of your final grade).
The assignments will take a form of short papers. Detailed instructions explaining the assignments will be posted on www in the “Mini-Research Assignments” section. All Mini-Research Assignments will be due at 10:30am on the day listed in the Course outline section of this syllabus. Taking off 1% for each day the assignment is late will penalize late work. Mini-Research Assignments should be submitted in electronic form only.
Final exam (90% of your grade).
The final exam will be a mixture of multiple choice and essay questions.
Table 1. Grading scale.
A 100-91%; B 90-81%; C 80-71%; D 70-61%; E 60-51%; F 50-0% - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Bi5050 Strukturni virologie
Faculty of ScienceSpring 2015
The course is not taught in Spring 2015
- Extent and Intensity
- 3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Plevka, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivo Rudolf, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (recent)