Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2021
- Rozsah
- 1/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Pá 12:00–13:50 D29/347-RCX2
- Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky. Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Cílem předmětu je seznámit studenty se základními i pokročilými klasifikačními a regresními neparametrickými metodami a naučit je aplikovat tyto metody v různých SW pro tvorbu modelů (R-project, Matlab, Statistica).
- Výstupy z učení
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- 1. Úvod do neparametrických metod - Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB).
- 2. Rozhodovací stromy I - Topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů.
- 3. Rozhodovací stromy II - Další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS).
- 4. Náhodné lesy I - Nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing.
- 5. Náhodné lesy II - Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce.
- 6. Měření přesnosti modelů I - Matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další.
- 7. Měření přesnosti modelů II - „Treshold independent“ indexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další.
- 8. Validační techniky I - Validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM).
- 9. Validační techniky II - Metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife.
- 10. Příklady použití neparametrických metod - Prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů.
- Literatura
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.iba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2020
- Rozsah
- 1/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Pá 12:00–13:50 D29/347-RCX2
- Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky. Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Cílem předmětu je seznámit studenty se základními i pokročilými klasifikačními a regresními neparametrickými metodami a naučit je aplikovat tyto metody v různých SW pro tvorbu modelů (R-project, Matlab, Statistica).
- Výstupy z učení
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- 1. Úvod do neparametrických metod - Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB).
- 2. Rozhodovací stromy I - Topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů.
- 3. Rozhodovací stromy II - Další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS).
- 4. Náhodné lesy I - Nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing.
- 5. Náhodné lesy II - Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce.
- 6. Měření přesnosti modelů I - Matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další.
- 7. Měření přesnosti modelů II - „Treshold independent“ indexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další.
- 8. Validační techniky I - Validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM).
- 9. Validační techniky II - Metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife.
- 10. Příklady použití neparametrických metod - Prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů.
- Literatura
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.iba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky. Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Cílem předmětu je seznámit studenty se základními i pokročilými klasifikačními a regresními neparametrickými metodami a naučit je aplikovat tyto metody v různých SW pro tvorbu modelů (R-project, Matlab, Statistica).
- Výstupy z učení
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- 1. Úvod do neparametrických metod - Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB).
- 2. Rozhodovací stromy I - Topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů.
- 3. Rozhodovací stromy II - Další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS).
- 4. Náhodné lesy I - Nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing.
- 5. Náhodné lesy II - Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce.
- 6. Měření přesnosti modelů I - Matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další.
- 7. Měření přesnosti modelů II - „Treshold independent“ indexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další.
- 8. Validační techniky I - Validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM).
- 9. Validační techniky II - Metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife.
- 10. Příklady použití neparametrických metod - Prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů.
- Literatura
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.iba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2015
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Čt 13:00–15:50 D29/347-RCX2
- Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2014
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Čt 13:00–15:50 D29/347-RCX2
- Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2013
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- St 13:00–15:50 D29/347-RCX2
- Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2012
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Rozvrh
- Čt 16:00–19:50 F01B1/709
- Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná biologie (program PřF, N-BI, směr Ekotoxikologie)
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2011
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (cvičící)
prof. Ing. Jiří Holčík, CSc. (náhr. zkoušející) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- St 17:00–19:50 F01B1/709
- Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné statistické met.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná biologie (program PřF, N-BI, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Prediktivní modelování
Přírodovědecká fakultajaro 2010
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Klára Komprdová, Ph.D. (cvičící) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- Po 13:00–16:50 F01B1/709
- Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné statistické met.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- určit prostorou závislost v datech
- používat metody pro prostorové a prediktivní modelování
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- vybrat vhodnou prediktivní metodu metodu v závislosti na rozložení dat
- srovnat výhody a nevýhod jednotlivých metod - Osnova
- Úvod do prediktivního modelování
- Základy vícerozměrných metod
- Parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů
- Statistické SW pro vícerozměrnou analýzu dat – představení různých SW (STATISTIKA, R-project, MATLAB)
- Parametrické a semiparametrické regresní metody (LM, GLM, GAM) – výběr linkovací funkce, multikolinearita, odhad parametrů modelu, hodnocení vhodnosti modelu
- Lineární regrese
- Zobecněné lineární modely
- Zobecněné aditivní modely
- Neparametrické metody I: Rozhodovací stromy – různé algoritmy tvorby stromů, stabilita stromu, krosvalidace
- Klasifikační stromy
- Regresní stromy
- Neparametrické metody II: Náhodné lesy - nadstavba nad rozhodovacími stromy
- Bagging, Boosting, Arcing, Random forest
- Analýza prostorových dat
- Prostorová autokorelace, Pseudoreplikace
- Interpolace x Extrapolace
- Použití parametrických a neparametrických metod pro prostorovou analýzu
- Reálné aplikace vícerozměrných prediktivních metod:
- srovnání prediktivních metod pro spojitá i kategoriální data (CCA, RDA, ENFA, regresní metody, stromy, lesy...)
- Příklady: prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Hengl T. (2007) A Practical Guide to Geostatistical Mapping of Environmental Variables
- Lemeshow, Stanley & Hosmer, David W., Jr.. Logistic regression, p. 1-11. In Encyclopaedia of Biostatistics, 1st ed. [Online.] Wiley, London.
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh, P., Nelder, J.A. (1989): Generalized Linear Models (2nd edition), Chapman & Hall
- Harrel F. E., Jr. (2001): Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression and Survival Analysis. Springer, Springer Series in Statistics, New York
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Prediktivní modelování
Přírodovědecká fakultajaro 2009
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Klára Komprdová, Ph.D. (cvičící) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné statistické met.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět je zaměřen na použití pokročilejších parametrických i neparametrických vícerozměrných metod pro prostorové a prediktivní modelování (od regrese až po nejnovější neparametrické metody). Důležitou částí bude srovnání výhod a nevýhod jednotlivých metod na různých datech (z hlediska statistického i prostorového rozložení). Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie.
- Osnova
- Úvod do prediktivního modelování
- Základy vícerozměrných metod
- Parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů
- Statistické SW pro vícerozměrnou analýzu dat – představení různých SW (STATISTIKA, R-project, MATLAB)
- Parametrické a semiparametrické regresní metody (LM, GLM, GAM) – výběr linkovací funkce, multikolinearita, odhad parametrů modelu, hodnocení vhodnosti modelu
- Lineární regrese
- Zobecněné lineární modely
- Zobecněné aditivní modely
- Neparametrické metody I: Rozhodovací stromy – různé algoritmy tvorby stromů, stabilita stromu, krosvalidace
- Klasifikační stromy
- Regresní stromy
- Neparametrické metody II: Náhodné lesy - nadstavba nad rozhodovacími stromy
- Bagging, Boosting, Arcing, Random forest
- Analýza prostorových dat
- Prostorová autokorelace, Pseudoreplikace
- Interpolace x Extrapolace
- Použití parametrických a neparametrických metod pro prostorovou analýzu
- Reálné aplikace vícerozměrných prediktivních metod:
- srovnání prediktivních metod pro spojitá i kategoriální data (CCA, RDA, ENFA, regresní metody, stromy, lesy...)
- Příklady: prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Hengl T. (2007) A Practical Guide to Geostatistical Mapping of Environmental Variables
- Lemeshow, Stanley & Hosmer, David W., Jr.. Logistic regression, p. 1-11. In Encyclopaedia of Biostatistics, 1st ed. [Online.] Wiley, London.
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- McCullagh, P., Nelder, J.A. (1989): Generalized Linear Models (2nd edition), Chapman & Hall
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Harrel F. E., Jr. (2001): Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression and Survival Analysis. Springer, Springer Series in Statistics, New York
- Metody hodnocení
- výuka bude probíhat blokově v počítačové učebně na Kamenici, zakončením předmětu bude písemná zkouška
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultajaro 2008
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Eva Gelnarová (cvičící)
Mgr. Klára Komprdová, Ph.D. (cvičící) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- Út 8:00–11:50 Kontaktujte učitele
- Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultajaro 2007
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- Út 9:00–12:50 PUK
- Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultajaro 2006
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Kohout (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh seminárních/paralelních skupin
- Bi7490/1: Rozvrh nebyl do ISu vložen.
- Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 9 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2004
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Rozvrh
- Pá 16:00–17:50 kamenice
- Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 9 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2003
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 9 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2002
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 9 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2024
Předmět se v období jaro 2024 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2023
Předmět se v období jaro 2023 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2022
Předmět se v období jaro 2022 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2021
Předmět se v období jaro 2021 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2020
Předmět se v období jaro 2020 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2019
Předmět se v období jaro 2019 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2018
Předmět se v období podzim 2018 nevypisuje.
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2018
Předmět se v období jaro 2018 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2017
Předmět se v období podzim 2017 nevypisuje.
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2017
Předmět se v období jaro 2017 nevypisuje.
- Rozsah
- 1/1/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultapodzim 2016
Předmět se v období podzim 2016 nevypisuje.
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz || Bi5045 Biostatistika pro mat. biol.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2016
Předmět se v období jaro 2016 nevypisuje.
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2015
Předmět se v období jaro 2015 nevypisuje.
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Klára Komprdová, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2014
Předmět se v období jaro 2014 nevypisuje.
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
prof. Ing. Jiří Holčík, CSc. (přednášející)
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné metody
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Speciální biologie (program PřF, N-EXB)
- Speciální biologie (program PřF, N-EXB, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2007
Předmět se v období podzim 2007 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Kohout (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2006
Předmět se v období podzim 2006 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Kohout (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2005
Předmět se v období podzim 2005 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Kohout (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Ústav botaniky a zoologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 9 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2012 - akreditace
Údaje z období jaro 2012 - akreditace se nezveřejňují
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (přednášející)
prof. Ing. Jiří Holčík, CSc. (přednášející)
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D.
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné statistické met.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná biologie (program PřF, N-BI, směr Ekotoxikologie)
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- používat klasifikační a regresní neparametrické metody
- validovat výstupy modelů pomocí různých validačních technik
- srovnat výsledky různých modelů
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- srovnat výhody a nevýhod přednášených metod - Osnova
- Úvod do neparametrických metod
- Základy pojmy: proces modelování, typy proměnných, klasifikace modelů, klasifikace x regrese, parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů, představení různých SW (STATISTIKA, R-project, MATLAB)
- Rozhodovací stromy I
- topologie stromu, kriteriální statistika, stabilita stromu, krosvalidace, měření přesnosti stromu, prořezávání, zástupné proměnné, klasifikační x regresní stromy, algoritmus typu CART, výhody x nevýhody rozhodovacích stromů
- Rozhodovací stromy II
- další algoritmy tvorby stromů: Patient Rule Induction Method (PRIM), Chi-squared Automatic Interaction Detector (CHAID), Quick, Unbiased and Efficient Statistical Tree (QUEST), Hierarchical Mixture of Experts (HME), Multivariate Adaptive Regression Splines (MARS)
- Náhodné lesy I
- nadstavba nad rozhodovacími stromy, tvorba validace lesů, různé typy lesů Bagging, Boosting, Arcing
- Náhodné lesy II
- Random forest - měření významnosti proměnných, efekt proměnných na predikci, shlukování, detekce odlehlých hodnot, predikce
- Měření přesnosti modelů I
- matice záměn, „treshold dependent“ indexy: Normalized mutual information (MI), Average of mutual information (AMI), Celková přesnost (OA), Cohenovo kappa, Tau a další
- Měření přesnosti modelů II
- „treshold independent“ idexy, specificita x senzitivita, Receiver Operating Characteristic curve (ROC) , Area Under the ROC Curve (AUC), koeficient determinace R2, deviance D2, maximum overall accuracy (MXOA), maximální kappa (MXKp), Mean cross entropy (MXE), Mean absolute prediction error (MAPE) a další
- Validační techniky I
- validační, testovací a trénovací soubor, celková obecná chyba modelu, analytické metody - Akaikovo informační kritérium (AIC), Bayesovo informační kritérium (BIC), Minimum description length (MDL), Structural risk minimization (SRM)
- Validační techniky II
- metoda Monte Carlo, metody založeny na opakovaném použití pozorování: krosvalidace, jednoduché rozdělení, bootstrap a jacknife
- Příklady použití neparametrických metod
- prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- MANLY, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 3rd ed. Boca Raton, Fla.: Chapman & Hall, 2007, 455 s. ISBN 9781584885412. info
- EDGINGTON, Eugene S. a Patrick ONGHENA. Randomization tests. 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2007, 345 s. ISBN 9781584885894. info
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Pokročilé neparametrické metody
Přírodovědecká fakultajaro 2011 - akreditace
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Mgr. Klára Komprdová, Ph.D. (cvičící)
- Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Bi5040 Biostatistika - základní kurz && Bi8600 Vícerozměrné statistické met.
Nutným předpokladem je dobrá znalost základní metodologie biostatistiky . Doporučeno je absolvování předmětu Vícerozměrných statických metod (Bi8600). - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Na koncitohoto kurzu bude student schopen:
- kriticky zhodnotit datový soubor z hlediska rozložení dat
- určit prostorou závislost v datech
- používat metody pro prostorové a prediktivní modelování
- osvojení si různých SW pro tvorbu modelů (R-project, Matlab, Statistica)
- vybrat vhodnou prediktivní metodu metodu v závislosti na rozložení dat
- srovnat výhody a nevýhod jednotlivých metod - Osnova
- Úvod do prediktivního modelování
- Základy vícerozměrných metod
- Parametrická a neparametrická vícerozměrná statistika – srovnání různých přístupů
- Statistické SW pro vícerozměrnou analýzu dat – představení různých SW (STATISTIKA, R-project, MATLAB)
- Parametrické a semiparametrické regresní metody (LM, GLM, GAM) – výběr linkovací funkce, multikolinearita, odhad parametrů modelu, hodnocení vhodnosti modelu
- Lineární regrese
- Zobecněné lineární modely
- Zobecněné aditivní modely
- Neparametrické metody I: Rozhodovací stromy – různé algoritmy tvorby stromů, stabilita stromu, krosvalidace
- Klasifikační stromy
- Regresní stromy
- Neparametrické metody II: Náhodné lesy - nadstavba nad rozhodovacími stromy
- Bagging, Boosting, Arcing, Random forest
- Analýza prostorových dat
- Prostorová autokorelace, Pseudoreplikace
- Interpolace x Extrapolace
- Použití parametrických a neparametrických metod pro prostorovou analýzu
- Reálné aplikace vícerozměrných prediktivních metod:
- srovnání prediktivních metod pro spojitá i kategoriální data (CCA, RDA, ENFA, regresní metody, stromy, lesy...)
- Příklady: prediktivní modelování rozšíření druhů, výběr významných druhů a prediktorů pro různé habitaty, valenční křivky, typologické mapy, modelování koncentrací polutantů
- Literatura
- Breiman L. (2001) Random forests. Machine Learning 45, pp. 5 32.
- Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, Data mining, Inference and Prediction, Springer 2003
- Hengl T. (2007) A Practical Guide to Geostatistical Mapping of Environmental Variables
- Lažanský et. Kol.: Umělá inteligence I.- IV.
- Jan Klaschka, Emil Kotrč: Klasifikační a regresní lesy, sborník konference ROBUST 2004
- Breiman, L. et al (1984) Classification and Regression Trees, Chapman and Hall
- Breiman L. (1996) Bagging predictors. Machine Learning 24, pp.123 140.
- McCullagh, P., Nelder, J.A. (1989): Generalized Linear Models (2nd edition), Chapman & Hall
- Harrel F. E., Jr. (2001): Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression and Survival Analysis. Springer, Springer Series in Statistics, New York
- Lemeshow, Stanley & Hosmer, David W., Jr.. Logistic regression, p. 1-11. In Encyclopaedia of Biostatistics, 1st ed. [Online.] Wiley, London.
- Legendre P., Legendre L. (1998) Numerical ecology (second ed.), Elsevier, Amsterdam
- McCullagh C. E., Searle S. R. (2001): Generalized, Linear, and Mixed Models, John Wiley & Sons.
- Výukové metody
- Výuka probíhá formou powerpointových prezentací. Každý blok bude doplněn praktickou částí na PC, kde bude možno si jednotlivé modely vyzkoušet v různých SW. Budou řešeny praktické úlohy na reálných datech z oblasti experimentální biologie, ekologie, chemie. Student vypracuje během semestru projekt na jedno ze zadaných témat.
- Metody hodnocení
- Zakončením předmětu bude písemná zkouška zaměřená na ověření teoretické pochopení probíraných metod a hodnocení projektu.
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultajaro 2008 - akreditace
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Bi7490 Základy stochastického modelování
Přírodovědecká fakultapodzim 2007 - akreditace
Předmět se v období podzim 2007 - akreditace nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Gelnarová (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Mgr. Jan Kohout (přednášející)
RNDr. Jan Mužík, Ph.D. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D. - Předpoklady
- Nutným předpokladem je dobrá znalost základní metodologie biostatistiky, základů plánování experimentů a základní znalost regresních analýz (přímka, polynomiální regrese).
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 10 mateřských oborů, zobrazit
- Cíle předmětu
- Pokročilý předmět poskytující základní teoretické vzdělání v širokém spektru metod od nejrůznějších regresních analýz (lineární a nelineární regrese, vícerozměrná regrese), přes běžné modely budované z experimentálních dat až po prediktivní aplikace Markovových řetězů. Důraz je kladen na pochopení aplikovatelnosti modelů na reálných biologických a klinických datech a dále na praktické hodnocení stability a správnosti modelů. Flexibilní složkou kurzu je úvod do analýzy časových řad.
- Osnova
- 1. Základní matematické operace s vektory a maticemi, řešení soustavy lineárních rovnic. Úvod do modelování. Modely vycházející z experimentálních dat.
- 2. Markovovy řetězy. Aplikace při modelování sukcese ekosystému, struktury biologických populací. Homogenní a nehomogenní Markovovy řetězy v ekologii, ekotoxikologii a medicíně. Leslieho matice.
- 3. Jednoduché aplikace regresní analýzy v různých biologických vědách. Stabilita modelů, redundance proměnných. Analýza reziduí modelů.
- 4. Regresní analýza v ekologii. Binární data jako nezávislé proměnné. Modelování nominálních dat analýzou rozptylu. Odhad vlivu environmentálních parametrů na biologické populace. Gaussovské křivky, indikátorové druhy. Modelování využívající kontingenční tabulky v ekologii.
- 5. Logistická regrese - jednorozměrný a vícerozměrný model. Srovnání logistické regrese a diskriminační analýzy.
- 6. Vícerozměrná lineární regrese - úvod a experimentální přístupy. Metoda nejmenších čtverců. Metoda maximální věrohodnosti. Vícerozměrná lineární regrese - výstavba modelu, hodnocení modelu. Předpoklady metody nejmenších čtverců.
- 7. Zobecněné vícerozměrné lineární modely. Analýza residuí - odhad homoskedacity a autokorelace. Aplikace zobecněných lineárních modelů.
- 8. Role korelační analýzy ve vícerozměrné regresi. Parametrické a neparametrické korelační koeficienty. Parciální korelace a vícenásobná korelace. Aplikace hřebenové regrese u multikolineárních dat. Případové studie vícerozměrných lineárních modelů. Nelineární regrese - základní algoritmy a experimentální přístup. Transformace vedoucí k lineární formě modelu.
- 9. Analýzy vztahů dávka- odpověď. Probit a logit analýza, odhady parametrů křivek dávka-odpověď. Metoda mediánové rovnice. Grafická prezentace složitých vztahů dávka-odpověď.
- 10. Regresní analýzy a analýzy vztahů v návaznosti na experimenty hodnocené analýzou rozptylu. Polynomiální regrese, pilotní odhady regresních koeficientů. Interakce pokusných zásahů, synergismus, antagonismus. Statistický průkaz synergismu a antagonismu pokusných faktorů.
- 11. Úvod do analýzy časových řad. Autokorelace. Analýza trendů. Box Jenkinsovy modely. Neparametrické metody pro odhad trendů u sezónních i nesezónních časových řad. Aplikace regresních metod při odhadu trendu v čase. Polynomiální regrese. Spline metody. Předpovědi u časových řad. Praktické příklady z aplikace časových řad v ekologii. Korelogram, periodogram.
- 12. Box Jenkinsovy modely časových řad. Spektrální analýza časových řad. Modelování vývoje sezónních složek časových řad u ekologických dat.
- Literatura
- MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr a Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. a John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. a James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Informace učitele
- http://www.cba.muni.cz/vyuka/
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Statistika zápisu (nejnovější)