Bi8660 Data analysis on PC II

Faculty of Science
Spring 2011
Extent and Intensity
0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
Teacher(s)
Mgr. Tomáš Zdražil (seminar tutor)
Mgr. Lukáš Kohút (seminar tutor)
Guaranteed by
prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Timetable of Seminar Groups
Bi8660/02: Mon 16:00–17:50 F01B1/709
Prerequisites
Basic knowledge of MS Windows, MS Office and basic statistisc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
Syllabus
  • 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
Literature
  • Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
  • Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
  • Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
  • Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
  • www.statsoft.com/textbook/stathome.html
  • www.r-project.org
Teaching methods
Practical training using computers
Assessment methods
Individual projects on correct application of statistical methods on example data
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Teacher's information
http://www.cba.muni.cz/vyuka/
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/spring2011/Bi8660