Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2011
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- Mgr. Tomáš Zdražil (seminar tutor)
Mgr. Lukáš Kohút (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Timetable of Seminar Groups
- Bi8660/02: Mon 16:00–17:50 F01B1/709
- Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2010
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- Mgr. Lukáš Kohút (seminar tutor)
Mgr. Tomáš Zdražil (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Timetable
- Tue 16:00–19:50 F01B1/709
- Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2009
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Timetable of Seminar Groups
- Bi8660/01: No timetable has been entered into IS.
Bi8660/02: No timetable has been entered into IS. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Assessment methods
- The credit for the course is obtained from presence of student on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2008
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2007
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2006
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Timetable of Seminar Groups
- Bi8660/Z: No timetable has been entered into IS.
Bi8660/P: No timetable has been entered into IS. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2005
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor)
RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
Department of Botany and Zoology – Biology Section – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Timetable
- Wed 14:00–15:50 Kontaktujte učitele
- Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2004
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor)
prof. RNDr. Luděk Bláha, Ph.D. (seminar tutor)
Mgr. Adam Svobodník, Ph.D. (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor)
RNDr. Jiří Polách (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
Department of Botany and Zoology – Biology Section – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Timetable
- Fri 16:00–17:50 kamenice
- Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2003
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor)
prof. RNDr. Luděk Bláha, Ph.D. (seminar tutor)
Mgr. Adam Svobodník, Ph.D. (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor)
RNDr. Jiří Polách (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
Department of Botany and Zoology – Biology Section – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2024
The course is not taught in Spring 2024
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2023
The course is not taught in Spring 2023
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2022
The course is not taught in Spring 2022
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2021
The course is not taught in Spring 2021
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2020
The course is not taught in Spring 2020
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2019
The course is not taught in Spring 2019
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of Sciencespring 2018
The course is not taught in spring 2018
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2017
The course is not taught in Spring 2017
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2016
The course is not taught in Spring 2016
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2015
The course is not taught in Spring 2015
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, N-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2014
The course is not taught in Spring 2014
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2013
The course is not taught in Spring 2013
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2012
The course is not taught in Spring 2012
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Jiří Jarkovský, Ph.D. (seminar tutor)
RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor)
prof. RNDr. Ladislav Dušek, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jiří Jarkovský, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- Practical statistical techniques on PC. Application and usage of statistical software on PC. Summary statistics and data vizualization in MS Office products. Data analysis in software available on Internet. Introduction to uni-dimensional statistical techniques and associated graphical outputs. Exploratory data analysis. Distribution investigation and distribution fitting, statistical comparison of distribution functions. Normality testing. Parametric and non-parametric two-sample and multiple-sample comparisons. Correlation analysis. Introduction to ANOVA techniques, experimental design.
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. Praha: SNTL - Nakladatelství technické literatury, 1987. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of Sciencespring 2012 - acreditation
The course is not taught in spring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D.
Supplier department: RECETOX – Faculty of Science - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
Bi8660 Data analysis on PC II
Faculty of ScienceSpring 2011 - only for the accreditation
The course is not taught in Spring 2011 - only for the accreditation
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- RNDr. Danka Haruštiaková, Ph.D. (seminar tutor)
RNDr. Eva Gelnarová (seminar tutor)
RNDr. Jan Mužík, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Jiří Jarkovský, Ph.D. - Prerequisites
- Basic knowledge of MS Windows, MS Office and basic statistisc.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Course objectives
- At the end of the course students obtain: - experience in advanced usage of Statistica software - basics of R software - experience in practacal data analysis
- Syllabus
- 1. Computer aided data analyses - introduction and principles of hierarchical data analysis. 2. Software for data analyses, data manipulation within MS-Windows. 3. Grafical features of statistical softwares - graphical presentation of continuous and cathegorial data, examples - model data files. 4. Exploratory and summary statistics - mean, median, confidence intervals, variance - calculations, presentation and interpretation. 5. Data distribution - graphical presentations (histograms, distribution functions), fitting to model distributions, testing of data normality. 6. One-sample testing (one- and two-tailed comparisons). 7. Two-samples comparisons (independent and dependent samples) - assumptions (normality, homogenity of variances) and testing. Parametric tests (independent and paired t-test), nonparametric tests (Mann-Whitney, median test, Wilcoxon test). 8. Introduction to parametric and neparametric corelation analysis. 9. Binomically distributed data - frequencies comparisons, chi-square and its applications, contingency tables. 10. Introduction to analysis of variance - assumptions, experimental design, calculations and results interpretations. 11. Analysis of model data -examples of complex data analysis (exploratory analysis, graphs and plots. 12. experimental design, hypotheses, selection of appropriate test, calculations and interpretations): two-sample testing, correlations, contingecy tables.
- Literature
- Snedecor, G.W., Cochran, W.G.: Statistical methods, Iowa 1971, Iowa State University Press.
- Zar, J.H.: Biostatistical analysis. New Jersey 1984, Prentice-Hall
- Benedík, J., Dušek, L: Sbírka příkladů z biostatistiky. Nakladatelství Konvoj 1993, Brno.
- Hebák, Petr - Hustopecký, Jiří. Vícerozměrné statistické metody s aplikacemi. Praha : SNTL - Nakladatelství technické literatury, 1987.
- www.statsoft.com/textbook/stathome.html
- www.r-project.org
- Teaching methods
- Practical training using computers
- Assessment methods
- Individual projects on correct application of statistical methods on example data
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: možno i blokově. - Teacher's information
- http://www.cba.muni.cz/vyuka/
- Enrolment Statistics (recent)