C4020 Physical Chemistry II

Faculty of Science
Autumn 2024
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
In-person direct teaching
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Mgr. Lukáš Veselý (seminar tutor)
Guaranteed by
doc. Mgr. Dominik Heger, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 11:00–12:50 B11/205
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of quantum chemistry, and chemical kinetics.
Learning outcomes
After completing this course, students will be able to:
- do energy level calculations for simple quantum systems
- write down and solve kinetic equations chemical reactions
- employ symmetry for the classification of orbital interactions
Syllabus

  • 1. QUANTUM THEORY (Atkins 7+8), MM
    Blackbody radiation and Planck's relation for energy. Particle nature of EM radiation and wave nature of particles. Schrödinger equation in 1D: Particles in a potential well. Wave functions and energy levels, Born probabilistic interpretation, normalization.
    2. STRUCTURE AND SPECTRA OF ATOMS (Atkins 9), MM
    Hydrogen spectral lines, energy in a bonded state, principal quantum number n. Atomic orbital, orbital 1s, radial part of the wave function and radial distribution function. Orbital angular momentum quantum number (l), magnetic quantum number (ml), orbitals 2s-3d. Atoms with more electrons, shadowing, effective nuclear charge, Slater´s rules. Energy-quantum numbers dependency.
    3. STRUCTURE OF MOLECULES (Atkins 10), MM
    Born-Oppenheimer approximation and potential energy curve. Theory of molecular orbitals, molecular ion H2+. Interaction of two AO: bonding and antibonding orbitals. Isosurface and symmetry of MO. Interaction diagram and rate of interaction versus overlapping. Bond order, filling of energy levels order. Sigma and pi orbitals. Overview of MO of homonuclear diatomic molecules, occupancy of energy levels, bond length, energy and vibration frequency.
    4. MOLECULAR SYMMETRY (Atkins 11), MM
    Symmetry particles and operations, their notation: axis and rotation, mirror planes, inversion and its centre, improper rotation and axis, identity and space. Symmetry group, classification of molecules based on their symmetry: groups C1, Cs, C2, Cnv, Dnh, D2d, Td, Oh. Representation and characters, tables. Symmetry and orbital interaction.
    5. STATISTICAL THERMODYNAMICS (Atkins 15), MM
    Configuration, the weight of configuration, weight of distribution calculation. Stirlings´approximation and ln W. Boltzmann´s distribution: dominant configuration, constant energy and a constant number of particles condition, population-energy dependency. Molecular partition function, a definition for a rigid rotor and interpretation.
    6. MOTION OF MOLECULES IN A GAS (Atkins 20.1.1), DH
    Microscopical view on the pressure of the ideal gases. Kinetic model criteria. Root-mean-square speed. Maxwell-Boltzmann distribution. Maxwell´s distribution for various molecules and temperatures. Most probable speed and average speed.
    7. TRANSPORT PROPERTIES OF IDEAL GASES, DIFUSSION (Atkins 20.1.4+20.3), DH
    Diffusion, flow and concentration gradient. Fick´s laws of diffusion. The diffusion coefficient and mean free path.
    8. CHEMICAL KINETICS (Atkins 21+22.3.2), DH
    Potential energy surface (Atkins 22.3.2). The principle of microscopic reversibility. Typical reaction mechanisms and solving of rate equations for parallel, opposed, consecutive reactions. Speed equations solving using an approximation of pseudo-first-order and pre-equlibria. Steady-state, kinetic and thermodynamic reaction control.
    9. CHEMICAL KINETICS (Atkins 21.1+23.1) (DH)
    Solving of specific kinetic problems, Lindemann mechanism of the unimolecular reaction. Homogeneous catalysis: pre-equilibria and steady-state approximation. Michaelis-Menten kinetics.
    10. SIMPLE MIXTURES (Atkins 5.3), MM
    Phase diagrams for vapour pressure, interpretation, the lever rule. Diagrams temperature- composition, a distillation of a mixture, azeotropes, immiscible liquids. Phase diagrams liquid-liquid, critical points, a distillation of partially miscible liquids. Phase diagrams liquid-solid.
    11. IONIC ACTIVITY AND CHEMICAL EQUILIBRIUM (Atkins 5.4.4, 6.2), DH Ionic activity in a solution, mean activity coefficient, Debye–Hückel limiting law. Shifting equilibria: Le Chatelier´s principle. Van´t Hoff equation: equilibria response to temperature change.
Literature
    required literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
  • HOUSTON, Paul L. Chemical kinetics and reaction dynamics. New York: Dover Publications, 2006, xix, 330. ISBN 0486453340. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
13 lectures. Enrollment in the corresponding seminar course C4020 is strongly recommended.
Assessment methods
Written exam or on-line oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
Teacher's information
It is recommended to enroll simultaneously in seminar C4020.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.

C4020 Physical Chemistry II

Faculty of Science
Autumn 2023
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 11:00–12:50 B11/205
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of equilibrium electrochemistry, quantum chemistry, and chemical kinetics.
Learning outcomes
After completing this course, students will be able to:
- do energy level calculations for simple quantum systems
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- employ symmetry for the classification of orbital interactions
Syllabus
  • C4020 Syllabus
    1. QUANTUM THEORY (Atkins 7+8), MM
    Blackbody radiation and Planck´s relationship for energy. Electromagnetic radiation as a wave and particle. Particle in a well: Schrödinger´s equation, wave function and energy levels, Born´s probability interpretation, normalisation. The harmonic oscillator energy levels. Particle on a sphere, degeneration.
    2. STRUCTURE AND SPECTRA OF ATOMS (Atkins 9), MM
    Hydrogen spectral lines, energy in a bonded state, principal quantum number n. Atomic orbital, orbital 1s, radial part of the wave function and radial distribution function. Orbital angular momentum quantum number (l), magnetic quantum number (ml), orbitals 2s-3d. Atoms with more electrons, shadowing, effective nuclear charge, Slater´s rules. Energy-quantum numbers dependency.
    3. STRUCTURE OF MOLECULES (Atkins 10), MM
    Born-Oppenheimer approximation and potential energy curve. Theory of molecular orbitals, molecular ion H2+. Interaction of two AO: bonding and antibonding orbitals. Isosurface and symmetry of MO. Interaction diagram and rate of interaction versus overlapping. Bond order, filling of energy levels order. Sigma and pi orbitals. Overview of MO of homonuclear diatomic molecules, occupancy of energy levels, bond length, energy and vibration frequency.
    4. MOLECULAR SYMMETRY (Atkins 11), MM
    Symmetry particles and operations, their notation: axis and rotation, mirror planes, inversion and its centre, improper rotation and axis, identity and space. Symmetry group, classification of molecules based on their symmetry: groups C1, Cs, C2, Cnv, Dnh, D2d, Td, Oh. Representation and characters, tables. Symmetry and orbital interaction.
    5. STATISTICAL THERMODYNAMICS (Atkins 15), MM
    Configuration, the weight of configuration, weight of distribution calculation. Stirlings´approximation and ln W. Boltzmann´s distribution: dominant configuration, constant energy and a constant number of particles condition, population-energy dependency. Molecular partition function, a definition for a rigid rotor and interpretation.
    6. MOTION OF MOLECULES IN A GAS (Atkins 20.1.1), DH
    Microscopical view on the pressure of the ideal gases. Kinetic model criteria. Root-mean-square speed. Maxwell-Boltzmann distribution. Maxwell´s distribution for various molecules and temperatures. Most probable speed and average speed.
    7. TRANSPORT PROPERTIES OF IDEAL GASES, DIFUSSION (Atkins 20.1.4+20.3), DH
    Diffusion, flow and concentration gradient. Fick´s laws of diffusion. The diffusion coefficient and mean free path.
    8. CHEMICAL KINETICS (Atkins 21+22.3.2), DH
    Potential energy surface (Atkins 22.3.2). The principle of microscopic reversibility. Typical reaction mechanisms and solving of rate equations for parallel, opposed, consecutive reactions. Speed equations solving using an approximation of pseudo-first-order and pre-equlibria. Steady-state, kinetic and thermodynamic reaction control.
    9. CHEMICAL KINETICS (Atkins 21.1+23.1) (DH)
    Solving of specific kinetic problems, Lindemann mechanism of the unimolecular reaction. Homogeneous catalysis: pre-equilibria and steady-state approximation. Michaelis-Menten kinetics.
    10. SIMPLE MIXTURES (Atkins 5.3), MM
    Phase diagrams for vapour pressure, interpretation, the lever rule. Diagrams temperature- composition, a distillation of a mixture, azeotropes, immiscible liquids. Phase diagrams liquid-liquid, critical points, a distillation of partially miscible liquids. Phase diagrams liquid-solid.
    11. IONIC ACTIVITY AND CHEMICAL EQUILIBRIUM (Atkins 5.4.4, 6.2), DH Ionic activity in a solution, mean activity coefficient, Debye–Hückel limiting law. Shifting equilibria: Le Chatelier´s principle. Van´t Hoff equation: equilibria response to temperature change.
Literature
    required literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen lectures. Enrollment in the corresponding seminar course C4020 is strongly recommended.
Assessment methods
Written exam or on-line oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
Teacher's information
It is recommended to enroll simultaneously in seminar C4020.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Autumn 2022
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Jan Hrbáč, Ph.D. (seminar tutor)
RNDr. Erik Kalla (seminar tutor)
Mgr. Milan Říha (seminar tutor)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
doc. RNDr. Mgr. Jozef Hritz, Ph.D. (assistant)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 8:00–9:50 B11/306
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of equilibrium electrochemistry, quantum chemistry, and chemical kinetics.
Learning outcomes
After completing this course, students will be able to:
- do energy level calculations for simple quantum systems
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- employ symmetry for the classification of orbital interactions
Syllabus
  • C4020 Syllabus
    1. QUANTUM THEORY (Atkins 7+8), MM
    Blackbody radiation and Planck´s relationship for energy. Electromagnetic radiation as a wave and particle. Particle in a well: Schrödinger´s equation, wave function and energy levels, Born´s probability interpretation, normalisation. The harmonic oscillator energy levels. Particle on a sphere, degeneration.
    2. STRUCTURE AND SPECTRA OF ATOMS (Atkins 9), MM
    Hydrogen spectral lines, energy in a bonded state, principal quantum number n. Atomic orbital, orbital 1s, radial part of the wave function and radial distribution function. Orbital angular momentum quantum number (l), magnetic quantum number (ml), orbitals 2s-3d. Atoms with more electrons, shadowing, effective nuclear charge, Slater´s rules. Energy-quantum numbers dependency.
    3. STRUCTURE OF MOLECULES (Atkins 10), MM
    Born-Oppenheimer approximation and potential energy curve. Theory of molecular orbitals, molecular ion H2+. Interaction of two AO: bonding and antibonding orbitals. Isosurface and symmetry of MO. Interaction diagram and rate of interaction versus overlapping. Bond order, filling of energy levels order. Sigma and pi orbitals. Overview of MO of homonuclear diatomic molecules, occupancy of energy levels, bond length, energy and vibration frequency.
    4. MOLECULAR SYMMETRY (Atkins 11), MM
    Symmetry particles and operations, their notation: axis and rotation, mirror planes, inversion and its centre, improper rotation and axis, identity and space. Symmetry group, classification of molecules based on their symmetry: groups C1, Cs, C2, Cnv, Dnh, D2d, Td, Oh. Representation and characters, tables. Symmetry and orbital interaction.
    5. STATISTICAL THERMODYNAMICS (Atkins 15), MM
    Configuration, the weight of configuration, weight of distribution calculation. Stirlings´approximation and ln W. Boltzmann´s distribution: dominant configuration, constant energy and a constant number of particles condition, population-energy dependency. Molecular partition function, a definition for a rigid rotor and interpretation.
    6. MOTION OF MOLECULES IN A GAS (Atkins 20.1.1), DH
    Microscopical view on the pressure of the ideal gases. Kinetic model criteria. Root-mean-square speed. Maxwell-Boltzmann distribution. Maxwell´s distribution for various molecules and temperatures. Most probable speed and average speed.
    7. TRANSPORT PROPERTIES OF IDEAL GASES, DIFUSSION (Atkins 20.1.4+20.3), DH
    Diffusion, flow and concentration gradient. Fick´s laws of diffusion. The diffusion coefficient and mean free path.
    8. CHEMICAL KINETICS (Atkins 21+22.3.2), DH
    Potential energy surface (Atkins 22.3.2). The principle of microscopic reversibility. Typical reaction mechanisms and solving of rate equations for parallel, opposed, consecutive reactions. Speed equations solving using an approximation of pseudo-first-order and pre-equlibria. Steady-state, kinetic and thermodynamic reaction control.
    9. CHEMICAL KINETICS (Atkins 21.1+23.1) (DH)
    Solving of specific kinetic problems, Lindemann mechanism of the unimolecular reaction. Homogeneous catalysis: pre-equilibria and steady-state approximation. Michaelis-Menten kinetics.
    10. SIMPLE MIXTURES (Atkins 5.3), MM
    Phase diagrams for vapour pressure, interpretation, the lever rule. Diagrams temperature- composition, a distillation of a mixture, azeotropes, immiscible liquids. Phase diagrams liquid-liquid, critical points, a distillation of partially miscible liquids. Phase diagrams liquid-solid.
    11. IONIC ACTIVITY AND CHEMICAL EQUILIBRIUM (Atkins 5.4.4, 6.2), DH Ionic activity in a solution, mean activity coefficient, Debye–Hückel limiting law. Shifting equilibria: Le Chatelier´s principle. Van´t Hoff equation: equilibria response to temperature change.
Literature
    required literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen lectures. Enrollment in the corresponding seminar course C4020 is strongly recommended.
Assessment methods
Written exam or on-line oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
Teacher's information
It is recommended to enroll simultaneously in seminar C4020.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
autumn 2021
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
prof. RNDr. Jan Hrbáč, Ph.D. (seminar tutor)
RNDr. Erik Kalla (seminar tutor)
Mgr. Milan Říha (seminar tutor)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
doc. RNDr. Mgr. Jozef Hritz, Ph.D. (assistant)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 14:00–15:50 B11/205
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of equilibrium electrochemistry, quantum chemistry, and chemical kinetics.
Learning outcomes
After completing this course, students will be able to:
- do energy level calculations for simple quantum systems
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- employ symmetry for the classification of orbital interactions
Syllabus
  • 1. Quantum theory (Atkins 7+8), MM ,
  • Blackbody radiation and Planck's relationship for energy. Částicová povaha EM záření a vlnová povaha částic. Částice v potenciálové jámě: Schrödingerova rovnice, vlnové funkce a hladiny energie, Bornova pravděpodobnostní interpretace, normování. Hladiny energie pro harmonický oscilátor. Hladiny energie částice na sféře, degenerace.
  • 2. Struktura a spektra atomů (Atkins 9), MM
  • Spektrální linie atomu H, energie vázaných stavů a hlavní kvantové číslo n. Význam pojmu atomový orbital, orbital 1s: radiální část vlnové funkce a radiální distribuční funkce. Kvantová čísla l a ml , orbitaly 2s-3d. Atomy s více elektrony: význam pojmu orbital, stínění a efektivní náboj, Slaterova pravidla. Závislost energie na l,
  • 3. Struktura molekul (Atkins 10), MM.
  • Bornova-Oppenheimerova aproximace a křivka potenciální energie. Teorie molekulových orbitalů: molekulový ion H2+. Interakce dvou AO: vazebné orbitaly a protivazebné orbitaly. Izoplochy a symetrické nálepky MO. Interakční diagram a míra interakce vs. překryv. Zaplňování hladin a pojem řád vazby. Orbitaly typu  a . Přehled MO homonukleárních biatomických molekul, obsazení hladin a vazebné délky, energie a vibrační frekvence.
  • 4. Symetrie molekul (Atkins 11), MM
  • Prvky a operace symetrie a jejich notace: rotace a vlastní osa, zrcadelní a rovina, inverze a její střed, nevlastní rotace a nevlastní osa, identita a celý prostor. Pojem grupa symetrie. Klasifikace vybraných molekul podle symetrie: Grupy C1, Cs, C2, Cnv, Cnh, Dnh, D2d, Td, Oh. Reprezentace a charaktery, tabulka charakterů. Symetrie a orbitální interakce.
  • 5. Statistická termodynamika (Atkins 15), MM
  • Okamžitá konfigurace, váha konfigurace (W), výpočet váhy distribuce. Vztah pro ln W pomocí Stirlingovy aproximace. Boltzmannovo rozdělení: pojem dominantní konfigurace, podmínka konstantní energie a konstantního počtu částic, závislost populace na energii. Molekulová partiční funkce, její zápis pro rigidní rotor a interpretace.
  • 6. Pohyb molekul v plynech (Atkins 20.1.1), DH
  • Tlak ideálního plynu mikroskopicky. Předpoklady kinetického modelu. Střední kvadratické rychlosti. Od Boltzmannova rozdělení energií k Maxwellovu rozdělení rychlostí. Maxwellova distribuce pro různé M a T. Nejpravděpodobnější rychlost a střední rychlost.
  • 7. Transportní vlastnosti ideálního plynu, difuze (Atkins 20.1.4+20.3), DH
  • Pojem difuze. Tok a jeho souvislost s gradientem koncentrace: 1. Fickův zákon difuze. Difúzní koeficient a střední volná dráha. 2. Fickův zákon difuze.
  • 8. Chemická kinetika – 2. pohled (Atkins 21+22.3.2), DH
  • Plochy potenciální energie (Atkins 22.3.2). Princip mikroskopické reversibility. Typické reakční mechanismy a přesná řešení jejich rychlostních rovnic pro paralelní, následné a vratné reakce. Řešení rychlostních rovnic využívající přiblížení: pseudo první řád, předřazená rovnováha. Ustálený stav, kinetické a termodynamické řízení reakcí.
  • 9. Chemická kinetika – 3. Pohled (Atkins 21.1+23.1) (DH)
  • Konkrétní řešení kinetických problémů: Lindemanův mechanismus unimolekulárního rozkladu. Homogenní katalýza – pomocí principu předřazené rovnováhy a aproximace ustáleného stavu. Enzymy: Mechanismus Michaelise a Mentenové.
  • 10. Jednoduché směsi: 2. pohled (Atkins 5.3), MM
  • Diagramy s tlakem par: složení páry, interpretace diagramů, pákové pravidlo. Diagramy teplota-složení: destilace směsí, azeotropy, nemísitelné kapaliny. Fázové diagramy rovnováhy kapalina-kapalina: rozdělení na fáze, kritické rozpouštěcí teploty, destilace částečně mísitelných kapalin. Fázové diagramy rovnováhy kapalina-pevná fáze.
  • 11. Aktivity iontů. Chemická rovnováha: 2. pohled (Atkins 5.4.4, 6.2), DH
  • Aktivity iontů v roztoku: střední aktivitní koeficienty, Debye-Hückelův limitní zákon. Jak reagují rovnováhy na změny tlaku. Odezva rovnováh na změny teploty: Van’t Hoffova rovnice.
Literature
    required literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen lectures. Enrollment in the corresponding seminar course C4020 is strongly recommended.
Assessment methods
Written exam or on-line oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
Teacher's information
It is recommended to enroll simultaneously in seminar C4020.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Autumn 2020
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 14:00–15:50 B11/205
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of quantum theory principles, techniques and applications, atomic and molecular structure, statistical thermodynamics, molecular motions, rates of chemical reactions including complex ones, and of molecular reaction dynamics.
Learning outcomes
After completing this course, students will be able to:
- do energy level calculations for simple quantum systems
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- employ symmetry for the classification of orbital interactions
Syllabus
  • 1. Quantum theory (Atkins 7+8), MM ,
  • Blackbody radiation and Planck's relationship for energy. Částicová povaha EM záření a vlnová povaha částic. Částice v potenciálové jámě: Schrödingerova rovnice, vlnové funkce a hladiny energie, Bornova pravděpodobnostní interpretace, normování. Hladiny energie pro harmonický oscilátor. Hladiny energie částice na sféře, degenerace.
  • 2. Struktura a spektra atomů (Atkins 9), MM
  • Spektrální linie atomu H, energie vázaných stavů a hlavní kvantové číslo n. Význam pojmu atomový orbital, orbital 1s: radiální část vlnové funkce a radiální distribuční funkce. Kvantová čísla l a ml , orbitaly 2s-3d. Atomy s více elektrony: význam pojmu orbital, stínění a efektivní náboj, Slaterova pravidla. Závislost energie na l,
  • 3. Struktura molekul (Atkins 10), MM.
  • Bornova-Oppenheimerova aproximace a křivka potenciální energie. Teorie molekulových orbitalů: molekulový ion H2+. Interakce dvou AO: vazebné orbitaly a protivazebné orbitaly. Izoplochy a symetrické nálepky MO. Interakční diagram a míra interakce vs. překryv. Zaplňování hladin a pojem řád vazby. Orbitaly typu  a . Přehled MO homonukleárních biatomických molekul, obsazení hladin a vazebné délky, energie a vibrační frekvence.
  • 4. Symetrie molekul (Atkins 11), MM
  • Prvky a operace symetrie a jejich notace: rotace a vlastní osa, zrcadelní a rovina, inverze a její střed, nevlastní rotace a nevlastní osa, identita a celý prostor. Pojem grupa symetrie. Klasifikace vybraných molekul podle symetrie: Grupy C1, Cs, C2, Cnv, Cnh, Dnh, D2d, Td, Oh. Reprezentace a charaktery, tabulka charakterů. Symetrie a orbitální interakce.
  • 5. Statistická termodynamika (Atkins 15), MM
  • Okamžitá konfigurace, váha konfigurace (W), výpočet váhy distribuce. Vztah pro ln W pomocí Stirlingovy aproximace. Boltzmannovo rozdělení: pojem dominantní konfigurace, podmínka konstantní energie a konstantního počtu částic, závislost populace na energii. Molekulová partiční funkce, její zápis pro rigidní rotor a interpretace.
  • 6. Pohyb molekul v plynech (Atkins 20.1.1), DH
  • Tlak ideálního plynu mikroskopicky. Předpoklady kinetického modelu. Střední kvadratické rychlosti. Od Boltzmannova rozdělení energií k Maxwellovu rozdělení rychlostí. Maxwellova distribuce pro různé M a T. Nejpravděpodobnější rychlost a střední rychlost.
  • 7. Transportní vlastnosti ideálního plynu, difuze (Atkins 20.1.4+20.3), DH
  • Pojem difuze. Tok a jeho souvislost s gradientem koncentrace: 1. Fickův zákon difuze. Difúzní koeficient a střední volná dráha. 2. Fickův zákon difuze.
  • 8. Chemická kinetika – 2. pohled (Atkins 21+22.3.2), DH
  • Plochy potenciální energie (Atkins 22.3.2). Princip mikroskopické reversibility. Typické reakční mechanismy a přesná řešení jejich rychlostních rovnic pro paralelní, následné a vratné reakce. Řešení rychlostních rovnic využívající přiblížení: pseudo první řád, předřazená rovnováha. Ustálený stav, kinetické a termodynamické řízení reakcí.
  • 9. Chemická kinetika – 3. Pohled (Atkins 21.1+23.1) (DH)
  • Konkrétní řešení kinetických problémů: Lindemanův mechanismus unimolekulárního rozkladu. Homogenní katalýza – pomocí principu předřazené rovnováhy a aproximace ustáleného stavu. Enzymy: Mechanismus Michaelise a Mentenové.
  • 10. Jednoduché směsi: 2. pohled (Atkins 5.3), MM
  • Diagramy s tlakem par: složení páry, interpretace diagramů, pákové pravidlo. Diagramy teplota-složení: destilace směsí, azeotropy, nemísitelné kapaliny. Fázové diagramy rovnováhy kapalina-kapalina: rozdělení na fáze, kritické rozpouštěcí teploty, destilace částečně mísitelných kapalin. Fázové diagramy rovnováhy kapalina-pevná fáze.
  • 11. Aktivity iontů. Chemická rovnováha: 2. pohled (Atkins 5.4.4, 6.2), DH
  • Aktivity iontů v roztoku: střední aktivitní koeficienty, Debye-Hückelův limitní zákon. Jak reagují rovnováhy na změny tlaku. Odezva rovnováh na změny teploty: Van’t Hoffova rovnice.
Literature
    required literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen lectures. Enrollment in the corresponding seminar course C4020 is strongly recommended.
Assessment methods
Written exam or on-line oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
Teacher's information
It is recommended to enroll simultaneously in seminar C4020.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Autumn 2019
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 11:00–12:50 B11/205
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of chemical kinetics, thermodynamics of mixtures, dynamical electrochemistry, electronic structure, and selected molecular spectroscopies.
Learning outcomes
After completing this course, students will be able to:
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- describe the dynamics of electrode processes
- employ symmetry for the classification of orbital interactions
- interpret electronic and basic magnetic resonance spectra
Syllabus
  • 1. Kinetic theory of the ideal gas. Pressure and molecular speeds. Root-mean-square spee and its calculation. Maxwellovo rozdělení rychlostí. Střední rychlost molekul a její výpočet. Odchylky od ideálního chování plynu: atrakce molekul a vliv jejich objemu. Kompresibilitní faktor. Van der Waalsova rovnice reálného plynu a kritické veličiny.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen non-obligatory lectures. Enrollment in the corresponding seminar course C3150 is strongly recommended.
Assessment methods
The basis of the exam is a written test with the prevalence of open questions. The test will be corrected and augmented with scores corresponding to individual tasks. The cutoff score for a successful written part is 50% points. A grade for the written part will be awarded according to the following clue: 50-59% points E, 60-69% points D, 70-79% points C, 80-89% points B, 90-100% points A. After a successful written part, oral part will follow. The result of the oral part will setup a final grade awarded. The final grade will be at most 1 degree worse and at most 2 degrees better with respect to the written part. Thus all students with a test score corresponding to D at the worst case will pass the exam, students with a test score corresponding to E may and may not pass the exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2018
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 17. 9. to Fri 14. 12. Wed 11:00–12:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of chemical kinetics, thermodynamics of mixtures, dynamical electrochemistry, electronic structure, and selected molecular spectroscopies.
Learning outcomes
After completing this course, students will be able to:
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- describe the dynamics of electrode processes
- employ symmetry for the classification of orbital interactions
- interpret electronic and basic magnetic resonance spectra
Syllabus
  • 1. Kinetic theory of the ideal gas. Pressure and molecular speeds. Root-mean-square spee and its calculation. Maxwellovo rozdělení rychlostí. Střední rychlost molekul a její výpočet. Odchylky od ideálního chování plynu: atrakce molekul a vliv jejich objemu. Kompresibilitní faktor. Van der Waalsova rovnice reálného plynu a kritické veličiny.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen non-obligatory lectures. Enrollment in the corresponding seminar course C3150 is strongly recommended.
Assessment methods
The basis of the exam is a written test with the prevalence of open questions. The test will be corrected and augmented with scores corresponding to individual tasks. The cutoff score for a successful written part is 50% points. A grade for the written part will be awarded according to the following clue: 50-59% points E, 60-69% points D, 70-79% points C, 80-89% points B, 90-100% points A. After a successful written part, oral part will follow. The result of the oral part will setup a final grade awarded. The final grade will be at most 1 degree worse and at most 2 degrees better with respect to the written part. Thus all students with a test score corresponding to D at the worst case will pass the exam, students with a test score corresponding to E may and may not pass the exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
autumn 2017
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Wed 11:00–12:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of chemical kinetics, thermodynamics of mixtures, dynamical electrochemistry, electronic structure, and selected molecular spectroscopies.
Learning outcomes
After completing this course, students will be able to:
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- describe the dynamics of electrode processes
- employ symmetry for the classification of orbital interactions
- interpret electronic and basic magnetic resonance spectra
Syllabus
  • 1. Kinetic theory of the ideal gas. Pressure and molecular speeds. Root-mean-square spee and its calculation. Maxwellovo rozdělení rychlostí. Střední rychlost molekul a její výpočet. Odchylky od ideálního chování plynu: atrakce molekul a vliv jejich objemu. Kompresibilitní faktor. Van der Waalsova rovnice reálného plynu a kritické veličiny.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen non-obligatory lectures. Enrollment in the corresponding seminar course C3150 is strongly recommended.
Assessment methods
The basis of the exam is a written test with the prevalence of open questions. The test will be corrected and augmented with scores corresponding to individual tasks. The cutoff score for a successful written part is 50% points. A grade for the written part will be awarded according to the following clue: 50-59% points E, 60-69% points D, 70-79% points C, 80-89% points B, 90-100% points A. After a successful written part, oral part will follow. The result of the oral part will setup a final grade awarded. The final grade will be at most 1 degree worse and at most 2 degrees better with respect to the written part. Thus all students with a test score corresponding to D at the worst case will pass the exam, students with a test score corresponding to E may and may not pass the exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2016
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
doc. Mgr. Jana Pavlů, Ph.D. (assistant)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Wed 11:00–12:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional homeworks (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-45; B: 44-40; C: 39-35; D: 34-30; E: 29-25; F: 24-0 points; P: 50-20; N: 19-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2015
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 11:00–12:50 B11/132
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional homeworks (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-45; B: 44-40; C: 39-35; D: 34-30; E: 29-25; F: 24-0 points; P: 50-20; N: 19-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2014
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 18:00–19:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional homeworks (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-45; B: 44-40; C: 39-35; D: 34-30; E: 29-25; F: 24-0 points; P: 50-20; N: 19-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2013
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 18:00–19:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional homeworks (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-45; B: 44-40; C: 39-35; D: 34-30; E: 29-25; F: 24-0 points; P: 50-20; N: 19-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2012
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Wed 15:00–16:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-45; B: 44-40; C: 39-35; D: 34-30; E: 29-25; F: 24-0 bodů; P: 50-20; N: 19-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2011
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 16:00–17:50 B11/205
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2011
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Thu 16:00–17:50 C12/311
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P; DE PAULA, Julio. Atkins' physical chemistry. 9th ed. Oxford : Oxford Univ. Press, 2010. 972 s. ISBN 9780199543373
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Fyzikálna chémia. 6. vyd. Bratislava: Slovenská technická univerzita v Bratislave, 1999, 308 s. ISBN 80-227-1238-8. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2010
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Fri 10:00–11:50 B11/132
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2010
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 18:00–19:50 A,01026
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2009
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 13:00–14:50 A,01026
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 38 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-42; B: 41-37; C: 36-32; D: 31-27; E: 26-22; F: 21-0 pints; P: 50-17; N: 16-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2008
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 11:00–12:50 A,01026
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
In the second module of physical chemistry fundamental concepts of theoretical chemistry are further developed with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Předmět je vyučován formou přednášky doplněné možností průběžného procvičování látky e-testy v IS.
Ukončení předmětu (písemnou zkouškou i kolokviem) má formu e-testu (100 min.)
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2007
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Zdenka Michaličková (assistant)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 11:00–12:50 A,01026
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
In the second module of physical chemistry fundamental concepts of theoretical chemistry are further developed with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Předmět je vyučován formou přednášky doplněné možností průběžného procvičování látky e-testy v IS.
Ukončení předmětu (písemnou zkouškou i kolokviem) má formu e-testu (100 min.)
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2006
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Zdenka Michaličková (assistant)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Tue 11:00–12:50 A,01026
Prerequisites
C4660 Basic Physical Chemistry || C3140 Physical Chemistry I
Prior study of basic physical chemistry assumed, some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
In the second module of physical chemistry fundamental concepts of theoretical chemistry are further developed with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Zkouška ústní, obvykle nepřesáhne 15 minut. Student si vylosuje 2 ze zveřejněných otázek a má nejméně 15 minut na písemnou přípravu (bez učebnic, poznámek a dalších pomůcek). Některé otázky jsou označeny jako důležitější a jejich hodnocení má větší váhu. Jiné otázky jsou označeny jako otázky, které přesahují rámec kurzu. Pokud si student takovouto otázku vylosuje, může losovat znovu.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Spring 2005
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Chemistry Section – Faculty of Science
Timetable
Mon 13:00–14:50 02004
Prerequisites
C3140 Physical Chemistry I || C4660 Basic Physical Chemistry
C3140 or C4660.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
In the second module of physical chemistry fundamental concepts of theoretical chemistry are further developed with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry and kinetics. Either C3140 or C4660 course must be passed before admission to the module is granted.
Syllabus
  • 1. Variační metoda, prostá (HMO) a rozšířená (EHT) Hückelova metoda, Z-matice, Mullikenova populační ana-lýza. Metoda selfkonzistentního pole. Metody funkcionálu hustoty. 2. Elektronové, vibrační, rotační a translační stavy molekul. Lineární harmonický oscilátor, energie nulového bo-du, vibrace dinukleární molekuly, tuhý rotor. 3. Kanonický soubor a kanonická partiční funkce, statisticko-termodynamické vyjádření vnitřní energie, entropie a Gibbsovy funkce, rovnovážná konstanta. 4. Reálné plyny, stavové rovnice, fugacita, fugacitní koeficient a jeho závislost na tlaku, kritický stav, princip ko-respondujících stavů. 5. Termodynamické závislosti, teplotní závislost vnitřní energie a entalpie, adiabatická expanze. Popis směsí, mí-sení, parciální molární veličiny, Gibbs-Duhemova rovnice. 6. Koligativní vlastnosti, zvýšení bodu varu a snížení bodu tuhnutí, osmóza. Fázová rovnováha v dvousložkových systémech, azeotropy, soustavy s chemickou reakcí. 7. Aktivity iontů, Debye-Hückelova teorie, iontová atmosféra. Termodynamika elektrochemických článků, závis-lost elektromotorické síly na teplotě. 8. Kinetická teorie ideálního plynu, Maxwell-Boltzmannovo rozdělení rychlostí, rozdělení energií, mezimoleku-lové srážky, srážkový průřez, frekvence srážek, střední volná dráha. 9. Transportní vlastnosti, tok molekulární veličiny, statistické zpracování difúze (random walk), transport iontů, vodivost, Debye-Hückel-Onsagerova teorie, iontové pohyblivosti, 10. Kinetika reakcí se složeným mechanismem, přiblížení stacionárního stavu, monomolekulární reakce, katalýza a autokatalýza, chemické oscilace. 11. Závislost reakční rychlosti na teplotě. Teorie tranzitního stavu, srážková teorie, PES a reakční koordináta, ak-tivovaný komplex a tranzitní stav, Eyringova rovnice. 12. Modely elektrodové dvojvrstvy, výměnná proudová hustota, Butler-Vollmerova rovnice, přepětí a polarizace, koroze. Elektrická dvojvrstva.
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Zkouška je ústní. Student si vylosuje 2 ze zveřejněných otázek a má nejméně 15 minut na písemnou přípravu. Některé otázky jsou označeny jako důležitější a jejich hodnocení má větší váhu. Jiné otázky jsou označeny jako otázky, které přesahují rámec kurzu. Pokud si student takovouto otázku vylosuje, může losovat znovu. Rozprava u kolokvia probíhá obdobně, požadavky na úspěšné ukončení jsou však nižší než při ukončení zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C3140 nebo C4660.
Listed among pre-requisites of other courses
Teacher's information
http://cheminfo.chemi.muni.cz/kubacek/FChII/index.htm
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Spring 2004
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Chemistry Section – Faculty of Science
Prerequisites
Prior study of thermodynamics assumed, some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
Chemical thermodynamics. The kinetic model of gases. Laws of diffusion. Chemical kinetics and its theoretical foundation. Equilibrium and dynamic electrochemistry. The course, building up on the C3140 Physical Chemistry I, aims to reach the undergraduate level of knowledge for students of chemistry.
Syllabus
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Zkouška je písemná a ústní. Písemná část trvá 60 minut a sestává jednak z otázek, kdy je třeba vybrat správnou odpověď ze čtyř možností, jednak z krátkých výpočetních příkladů (doporučuje se kalkulačka). Student může použít učebnice, poznámky a další pomůcky. Individuální hodnocení nepřipouští komunikaci. Ústní část obvykle nepřesáhne 15 minut. Student si vylosuje 2 ze zveřejněných otázek a má nejméně 15 minut na písemnou přípravu (bez učebnic, poznámek a dalších pomůcek). Některé otázky jsou označeny jako důležitější a jejich hodnocení má větší váhu. Jiné otázky jsou označeny jako otázky, které přesahují rámec úvodního kurzu. Pokud si student takovouto otázku vylosuje, může losovat znovu.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C3140.
Listed among pre-requisites of other courses
Teacher's information
http://cheminfo.chemi.muni.cz/kubacek/FChII/index.htm
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Spring 2003
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Chemistry Section – Faculty of Science
Prerequisites
Prior study of thermodynamics assumed, some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 26 fields of study the course is directly associated with, display
Course objectives
Chemical thermodynamics. The kinetic model of gases. Laws of diffusion. Chemical kinetics and its theoretical foundation. Equilibrium and dynamic electrochemistry. The course, building up on the C3140 Physical Chemistry I, aims to reach the undergraduate level of knowledge for students of chemistry.
Syllabus
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Zkouška je písemná a ústní. Písemná část trvá 60 minut a sestává jednak z otázek, kdy je třeba vybrat správnou odpověď ze čtyř možností, jednak z krátkých výpočetních příkladů (doporučuje se kalkulačka). Student může použít učebnice, poznámky a další pomůcky. Individuální hodnocení nepřipouští komunikaci. Ústní část obvykle nepřesáhne 15 minut. Student si vylosuje 2 ze zveřejněných otázek a má nejméně 15 minut na písemnou přípravu (bez učebnic, poznámek a dalších pomůcek). Některé otázky jsou označeny jako důležitější a jejich hodnocení má větší váhu. Jiné otázky jsou označeny jako otázky, které přesahují rámec úvodního kurzu. Pokud si student takovouto otázku vylosuje, může losovat znovu.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C3140.
Listed among pre-requisites of other courses
Teacher's information
http://cheminfo.chemi.muni.cz/ktfch/kubacek/FChII/index.htm
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Spring 2002
Extent and Intensity
2/0/0. 3 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Chemistry Section – Faculty of Science
Prerequisites (in Czech)
C3140 Physical Chemistry I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 27 fields of study the course is directly associated with, display
Course objectives
The course extends the areas of application of the laws of thermodynamics to real gasses, ideal and real solutions, two component phase diagrams and electrochemistry. Reviewed are topics: the kinetic theory of a perfect gas, laws of diffusion, principles of chemical kinetics, transition state theory of reaction rate, principles of dynamic electrochemistry. Upon the successful completion of this course the student should be able to apply physical chemistry principles to practical laboratory experiments, perform quantitative calculations, and interpret experimental results and draw conclusions.
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
Listed among pre-requisites of other courses
Teacher's information
http://cheminfo.chemi.muni.cz/ktfch/kubacek/FChII/index.htm
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Spring 2001
Extent and Intensity
2/0/0. 3 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Chemistry Section – Faculty of Science
Prerequisites (in Czech)
C3140 Physical Chemistry I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 27 fields of study the course is directly associated with, display
Course objectives
The course extends the areas of application of the laws of thermodynamics to real gasses, ideal and real solutions, two component phase diagrams and electrochemistry. Reviewed are topics: the kinetic theory of a perfect gas, laws of diffusion, principles of chemical kinetics, transition state theory of reaction rate, principles of dynamic electrochemistry. Upon the successful completion of this course the student should be able to apply physical chemistry principles to practical laboratory experiments, perform quantitative calculations, and interpret experimental results and draw conclusions.
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
Listed among pre-requisites of other courses
Teacher's information
http://cheminfo/ktfch/kubacek/FChII
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Physical Chemistry II

Faculty of Science
Spring 2000
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
doc. RNDr. Pavel Brož, Ph.D.
prof. RNDr. Jiří Sopoušek, CSc.
doc. RNDr. Marie Studničková, CSc.
prof. RNDr. Libuše Trnková, CSc.
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Chemistry Section – Faculty of Science
Prerequisites (in Czech)
C3140 Physical Chemistry I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 27 fields of study the course is directly associated with, display
Syllabus
  • The course extends the areas of application of the laws of thermodynamics to real gasses, ideal and real solutions, two component phase diagrams and electrochemistry. Reviewed are topics: the kinetic theory of a perfect gas, laws of diffusion, principles of chemical kinetics, transition state theory of reaction rate, principles of dynamic electrochemistry. Upon the successful completion of this course the student should be able to apply physical chemistry principles to practical laboratory experiments, perform quantitative calculations, and interpret experimental results and draw conclusions.
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
Listed among pre-requisites of other courses
Teacher's information
http://cheminfo.chemi.muni.cz/ktfch/kubacek/sylabus_FCh2.html
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2019

The course is not taught in Spring 2019

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of chemical kinetics, thermodynamics of mixtures, dynamical electrochemistry, electronic structure, and selected molecular spectroscopies.
Learning outcomes
After completing this course, students will be able to:
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- describe the dynamics of electrode processes
- employ symmetry for the classification of orbital interactions
- interpret electronic and basic magnetic resonance spectra
Syllabus
  • 1. Kinetic theory of the ideal gas. Pressure and molecular speeds. Root-mean-square spee and its calculation. Maxwellovo rozdělení rychlostí. Střední rychlost molekul a její výpočet. Odchylky od ideálního chování plynu: atrakce molekul a vliv jejich objemu. Kompresibilitní faktor. Van der Waalsova rovnice reálného plynu a kritické veličiny.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen non-obligatory lectures. Enrollment in the corresponding seminar course C3150 is strongly recommended.
Assessment methods
The basis of the exam is a written test with the prevalence of open questions. The test will be corrected and augmented with scores corresponding to individual tasks. The cutoff score for a successful written part is 50% points. A grade for the written part will be awarded according to the following clue: 50-59% points E, 60-69% points D, 70-79% points C, 80-89% points B, 90-100% points A. After a successful written part, oral part will follow. The result of the oral part will setup a final grade awarded. The final grade will be at most 1 degree worse and at most 2 degrees better with respect to the written part. Thus all students with a test score corresponding to D at the worst case will pass the exam, students with a test score corresponding to E may and may not pass the exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
spring 2018

The course is not taught in spring 2018

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of chemical kinetics, thermodynamics of mixtures, dynamical electrochemistry, electronic structure, and selected molecular spectroscopies.
Learning outcomes
After completing this course, students will be able to:
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- describe the dynamics of electrode processes
- employ symmetry for the classification of orbital interactions
- interpret electronic and basic magnetic resonance spectra
Syllabus
  • 1. Kinetic theory of the ideal gas. Pressure and molecular speeds. Root-mean-square spee and its calculation. Maxwellovo rozdělení rychlostí. Střední rychlost molekul a její výpočet. Odchylky od ideálního chování plynu: atrakce molekul a vliv jejich objemu. Kompresibilitní faktor. Van der Waalsova rovnice reálného plynu a kritické veličiny.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen non-obligatory lectures. Enrollment in the corresponding seminar course C3150 is strongly recommended.
Assessment methods
The basis of the exam is a written test with the prevalence of open questions. The test will be corrected and augmented with scores corresponding to individual tasks. The cutoff score for a successful written part is 50% points. A grade for the written part will be awarded according to the following clue: 50-59% points E, 60-69% points D, 70-79% points C, 80-89% points B, 90-100% points A. After a successful written part, oral part will follow. The result of the oral part will setup a final grade awarded. The final grade will be at most 1 degree worse and at most 2 degrees better with respect to the written part. Thus all students with a test score corresponding to D at the worst case will pass the exam, students with a test score corresponding to E may and may not pass the exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2017

The course is not taught in Spring 2017

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of chemical kinetics, thermodynamics of mixtures, dynamical electrochemistry, electronic structure, and selected molecular spectroscopies.
Learning outcomes
After completing this course, students will be able to:
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- describe the dynamics of electrode processes
- employ symmetry for the classification of orbital interactions
- interpret electronic and basic magnetic resonance spectra
Syllabus
  • 1. Kinetic theory of the ideal gas. Pressure and molecular speeds. Root-mean-square spee and its calculation. Maxwellovo rozdělení rychlostí. Střední rychlost molekul a její výpočet. Odchylky od ideálního chování plynu: atrakce molekul a vliv jejich objemu. Kompresibilitní faktor. Van der Waalsova rovnice reálného plynu a kritické veličiny.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, equations of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press, 2010, xxxii, 972. ISBN 9780199543373. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda, 2002, 139 s. ISBN 8086369064. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen non-obligatory lectures. Enrollment in the corresponding seminar course C3150 is strongly recommended.
Assessment methods
The basis of the exam is a written test with the prevalence of open questions. The test will be corrected and augmented with scores corresponding to individual tasks. The cutoff score for a successful written part is 50% points. A grade for the written part will be awarded according to the following clue: 50-59% points E, 60-69% points D, 70-79% points C, 80-89% points B, 90-100% points A. After a successful written part, oral part will follow. The result of the oral part will setup a final grade awarded. The final grade will be at most 1 degree worse and at most 2 degrees better with respect to the written part. Thus all students with a test score corresponding to D at the worst case will pass the exam, students with a test score corresponding to E may and may not pass the exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2016

The course is not taught in Spring 2016

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2015

The course is not taught in Spring 2015

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2014

The course is not taught in Spring 2014

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2013

The course is not taught in Spring 2013

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2012

The course is not taught in Spring 2012

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2011 - acreditation

The information about the term Autumn 2011 - acreditation is not made public

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Autumn 2010 - only for the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2011 - only for the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
Spring 2008 - for the purpose of the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 17 fields of study the course is directly associated with, display
Course objectives
In the second module of physical chemistry fundamental concepts of theoretical chemistry are further developed with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • ATKINS, P. W. Physical chemistry. 5th ed. Oxford: Oxford University Press, 1994, 1031 s. ISBN 0192690426. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • DVOŘÁK, Jiří and Jiří KORYTA. Elektrochemie. 3., dopl. a rozš. vyd. Praha: Academia, 1983, 410 s. URL info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Assessment methods (in Czech)
Předmět je vyučován formou přednášky doplněné možností průběžného procvičování látky e-testy v IS.
Ukončení předmětu (písemnou zkouškou i kolokviem) má formu e-testu (100 min.)
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

C4020 Advanced Physical Chemistry

Faculty of Science
spring 2012 - acreditation

The course is not taught in spring 2012 - acreditation

The information about the term spring 2012 - acreditation is not made public

Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Pavel Kubáček, CSc. (lecturer)
Guaranteed by
doc. RNDr. Pavel Kubáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Basic Physical Chemistry
Prior study of basic physical chemistry assumed (e.g. C4660), some knowledge of calculus (M1010 Mathematics I and M2010 Mathematics II or similar) and physics is useful, but not a prerequisite.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 12 fields of study the course is directly associated with, display
Course objectives
After completing this course students will understand fundamental concepts of theoretical chemistry to real chemical systems with an emphasis on the relationships between the microscopic structure and macroscopic properties of matter. Students will develop quantitative skills for interpreting the behavior of matter by physical theories. Topics will include quantum theory, chemical statistics, thermodynamics, electrochemistry, and kinetics. Course C4660 must be passed before admission to the module is granted.
Syllabus
  • (1) Variation method, simple (HMO) and extended (EHT) Hückel methods, Z-matrix, Mulliken population analysis. Self-consistent field method. Density functional.
  • (2) Electronic, vibrational, rotational and translational states of molecule. Linear harmonic oscillator, zero point energy, vibration of dinuclear molecule, rigid rotor.
  • (3) Canonical ensemble and canonical partition function, statistical thermodynamic formulation of internal energy, entropy and Gibbs function, equilibrium constant.
  • (4) Real gasses, state equation of state, fugacity, fugacity coefficient and its pressure dependence, critical state, principle of corresponding states.
  • (5) Thermodynamic dependencies, temperature dependence of internal energy and enthalpy, adiabatic expansion. Mixtures, mixing, partial molar quantities, Gibbs-Duhem equation.
  • (6) Colligative properties, elevation of boiling point and depression of freezing point, osmosis. Phase equilibrium in two-component systems, azeotropes, reacting systems.
  • (7) Ion activities, Debye-Hückel theory, ionic atmosphere. Thermodynamics of electrochemical cells. Temperature dependence of electromotive force.
  • (8) Kinetic theory ideal gas, Maxwell-Boltzmann distribution of velocities, distribution of energy, intermolecular collisions, collision crossection, collision frequency, mean free path.
  • (9) Transport properties, flux of molecular quantity, statistical view of diffusion (random walk), transport of ions, conductivity, Debye-Hückel-Onsager theory, mobilities of ions.
  • (10) Kinetics of reactions with complex mechanism, stationary state approximation, monomolecular reactions, catalysis and autocatalysis, chemical oscillations.
  • (11) Temperature dependence of reaction rate. Transition state theory, collision theory, PES and reaction coordinate, activated complex and transition state, Eyring equation.
  • (12) Models of electrode double layer, exchange current density, Butler-Vollmer equation, overpotential and polarization, corrosion. Electric double layer.
Literature
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press, 2006, xxx, 1064. ISBN 0198700725. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
    not specified
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press, 2002, xxi, 1150. ISBN 0198792859. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury, 1981, 974 s. info
  • Comprehensive dictionary of physical chemistry. Edited by Ladislav Ulický - Terence James Kemp. 1st pub. New York: Ellis Horwood, 1992, 472 s. ISBN 0-13-151747-3. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Twelve non-obligatory lectures with twelve running optional home works (e-tests).
Assessment methods
Final written examination (multiple choice e-test; 30 questions) lasts 100 minutes. Maximum of points will be 50 (A: 50-44; B: 43-39; C: 38-34; D: 33-29; E: 28-24; F: 23-0 bodů; P: 50-19; N: 18-0 points).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (recent)