C6210 Biotechnology
Faculty of ScienceSpring 2025
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 19. 2. to Sun 26. 5. Thu 9:00–10:50 B11/335
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2023
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/205
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/205
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2021
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 1. 3. to Fri 14. 5. Thu 9:00–10:50 online_BCH1
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2020
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/205
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnology and microbial (cell) physiology, the model selection.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2019
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 18. 2. to Fri 17. 5. Thu 9:00–10:50 B11/205
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture.
- Continuous culture.
- Immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of Sciencespring 2018
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/205
- Prerequisites
- ( Bi1700 Cell Biology || C7920 Struct. and func. of proteins || CG010 Proteomics || C1470 Introduction to mathematics for chemoinformatics and bioinformatics || SOUHLAS) && !NOWANY( C6211 Biotechnology )
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnology and microbial (cell) physiology, the model selection.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2017
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 20. 2. to Mon 22. 5. Thu 9:00–10:50 B11/205
- Prerequisites
- C3181 Biochemistry I || C1601 General and Inorg. Chemistry || C5720 Biochemistry || C3580 Biochemistry
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals are biochemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes.
- Learning outcomes
- Students will be able:
-to be knowledgeable about biochemistry and physiology of organisms in relation to their use in biotechnology;
-to know principles of selected fermentation processes and application of biotechnology to environmental protection;
-to understand basic biotechnological operations and processes taking part in bioreactors of various construction;
-to understand fundamental knowledge of microbial kinetics. - Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer, wine and organic acid production.
- Microbial biomass production as a protein supply, biomining, biomedicine).
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons), biogas, biofuels, algae biotechnology, bioelectricity).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. Oxygen transfer.
- Determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnology and microbial (cell) physiology, the model selection.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes.
- Literature
- recommended literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of ScienceSpring 2016
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/132
- Prerequisites
- C3181 Biochemistry I || C3580 Biochemistry || C5720 Biochemistry
Basic knowledge of biochemistry and cell biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilised cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. From beer, wine and microbial biomass production to biogas, microbial fuel cells and biomedicine.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Kinetic models in biotechnology and microbial (cell) physiology, the model selection.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2015
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
Mgr. Jan Ryneš, Ph.D. (assistant) - Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/132
- Prerequisites
- Basic knowledge of biochemistry and cell biology.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilised cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine production.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnology and microbial (cell) physiology, the model selection.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2014
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/132
- Prerequisites
- Basic knowledge of biochemistry and cell biology.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilised cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine production.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnology and microbial (cell) physiology, the model selection.
- Continuous culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. Understanding of principles and processes is required. Fifty % of correct answers from the part of bioprocess kinetics is required to continue with the exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2013
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/132
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2012
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/132
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2011
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Thu 9:00–10:50 B11/132
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2010
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Thu 9:00–10:50 aula_Vinařská
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2009
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Tue 16:00–17:50 A,01026
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2008
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Tue 15:00–16:50 A,01026
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- Ústní zkouška. Důraz je kladen na pochopení principů.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2007
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Tue 16:00–17:50 A,01026
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- Ústní zkouška za použití přednáškových nebo jiných materiálů. Důraz je kladen na pochopení principů.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2006
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Tue 15:00–16:50 A,01026
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- Ústní zkouška za použití přednáškových nebo jiných materiálů. Důraz je kladen na pochopení principů.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2005
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Timetable
- Mon 8:00–9:50 02004
- Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- Ústní zkouška za použití přednáškových nebo jiných materiálů. Důraz je kladen na pochopení principů.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2004
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- Ústní zkouška za použití přednáškových nebo jiných materiálů. Důraz je kladen na ověření pochopení principů.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- V závěrečném hodnocení je důraz na písemné zkoušce, případná ústní zkouška je doplňujícím kritériem.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2002
- Extent and Intensity
- 2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 29 fields of study the course is directly associated with, display
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- V závěrečném hodnocení je důraz na písemné zkoušce, případná ústní zkouška je doplňujícím kritériem.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2001
- Extent and Intensity
- 2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites
- Biochemistry I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 27 fields of study the course is directly associated with, display
- Course objectives
- Objective of the lecture are biochemical principles of classical and modern biotechnologies (from food to environment) and fundamental processes in fermenters. Emphasis is based on growth and production kinetics in batch and continuous processes, kinetic models in biotechnology and physiology, and immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology. Biochemistry, microbiology and engineering principles.
- The importance of microorganisms in biotechnology. Biochemistry and physiology of microorganisms related to biotechnological processes.
- Biochemical and chemical principles of classical biotechnologies (e.g., beer, wine, organic acids, biomass production as a protein source, biogass, environmental applications).
- Cultivation and production reactors, scale-up.
- Aeration in bioprocesses. Methods for determination of mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand in production cultures and enzymes, scale-up.
- Growth and production kinetics. The models of substrate utilization, product formation, cell growth and death kinetics. Determination of kinetic parameters in batch and continuous processes.
- Mathematical models in biotechnology and physiology. The selection and application of the model. Errors in data and calculations, statistical analysis, testing linear and non-linear models.
- Immobilised cells and enzymes. Principles and applications. Bioreactors based on immobilised cells and enzymes. Bioreactor configuration, kinetic pattern.
- Literature
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- Assessment methods (in Czech)
- V závěrečném hodnocení je důraz na písemné zkoušce, případná ústní zkouška je doplňujícím kritériem.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student/biotechc.htm
C6210 Biotechnology
Faculty of ScienceSpring 2000
- Extent and Intensity
- 2/0/0. 3 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Syllabus
- A basic lecture for undergradute biochemistry and some biology students, the optional lecture for other postgraduate students. Principles of classical and modern biotechnological processes (from food to environment). Cultivation and production reactors, mass-transfer in bioprocesses, reactor engineering, scale-up.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
C6210 Biotechnology
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2011 - only for the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course students should understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes including biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- KAŠTÁNEK, František. Bioinženýrství. Vyd. 1. Praha: Academia, 2001, 334 s. ISBN 8020007687. info
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Teaching methods
- Lectures on selected parts of biotechnology. Discussions on detailed subjects.
- Assessment methods
- Lectures, discussions during lectures. Oral exam. To understand principles of processes.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
C6210 Biotechnology
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Ing. Martin Mandl, CSc. (lecturer)
- Guaranteed by
- doc. Ing. Martin Mandl, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. Ing. Martin Mandl, CSc. - Prerequisites
- Basic knowledge of biochemistry and enzyme kinetics.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The goals of the lecture are to understand biochemical and chemical principles of traditional and recent biotechnologies and fundamental processes in fermenters and other apparatuses which provide the biotechnological use of metabolic activity of organisms or enzymes. The content of the lecture includes biochemistry and physiology of organisms applied in biotechnology, selected biotechnological processes (from fermentation products to environment protection), bioprocess kinetics in batch and continuous systems, interpretation of kinetic models in biotechnology and microbial (cell) physiology, and application of immobilized cells and enzymes.
- Syllabus
- Microbial and enzyme biotechnology, historical survey. Biochemistry, microbiology and engineering principles.
- Biochemical and chemical principles of classical and recent biotechnologies. Beer production.
- Wine pruduction.
- Organic acids, biogas, microbial biomass production as a protein supply, biohydrometallurgy, biotransformation.
- Environmental biotechnology. Bioremediation (heavy metals, hydrocarbons).
- Cultivation and production bioreactors, scale-up. Agitation in fermenters, the impact on metabolic activity of organisms.
- Sterilization, chemical and physical processes, design criterion for sterilization.
- Aeration in bioprocesses. The theory of oxygen transfer.
- Methods for determination of the mass-transfer oxygen coefficient. Aeration parameters in bioreactors in relation to oxygen demand by production cultures and enzymes, scale-up.
- Batch culture. Growth and production kinetics. Models of substrate utilization and product formation.
- Cell growth and death kinetics. Kinetic models in biotechnolgy and microbial (cell) physiology, the model selection.
- Continuos culture. Determination of kinetic and physiological parameters in a chemostat. The relationship with the batch culture.
- Immobilised cells and enzymes, principles and applications.
- Bioreactors based on immobilised cells and enzymes, kinetic pattern.
- Literature
- STANBURY, Peter F., Allan WHITAKER and Stephen J. HALL. Principles of fermentation technology. 2nd ed. Oxford: Pergamon, 1995, xviii, 357. ISBN 0-08-036131-5. info
- DORAN, Pauline M. Bioprocess engineering principles. London: Academic Press, 1995, xiv, 439 s. ISBN 0-12-220856-0. info
- KRUMPHANZL, Vladimír and Zdeněk ŘEHÁČEK. Mikrobiální technologie : buňka a techniky jejího využití. 1. vyd. Praha: Academia, 1988, 360 s. info
- ALEXANDER, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994, 302 s. ISBN 0-12-049860-X. info
- Assessment methods (in Czech)
- Ústní zkouška za použití přednáškových nebo jiných materiálů. Důraz je kladen na pochopení principů.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- C6211 Biotechnology
C3181 && !NOWANY(C6210)
- C6211 Biotechnology
- Teacher's information
- http://orion.chemi.muni.cz/biochem/student.htm
- Enrolment Statistics (recent)