C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2019
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jana Klánová, Ph.D.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 18. 2. to Fri 17. 5. Mon 9:00–10:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
spring 2018
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Pernilla Marianne Carlsson, PhD. (lecturer)
Petra Booij, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jana Klánová, Ph.D.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 9:00–10:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2017
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Pernilla Marianne Carlsson, PhD. (lecturer)
Petra Booij, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jana Klánová, Ph.D.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 20. 2. to Mon 22. 5. Mon 11:00–12:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2016
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Pernilla Marianne Carlsson, PhD. (lecturer)
Petra Booij, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jana Klánová, Ph.D.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 11:00–12:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2015
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
Petra Booij, Ph.D. (lecturer)
Pernilla Marianne Carlsson, PhD. (lecturer)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jana Klánová, Ph.D.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 11:00–12:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2014
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
Sara Pernilla Bohlin, PhD. (lecturer)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 11:00–12:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2013
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Lisa Emily Melymuk, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 11:00–12:50 D29/252-RCX1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2012
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Timetable
Mon 11:00–12:50 409-stara KAM1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2011
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 409-stara KAM1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2010
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
prof. RNDr. Jakub Hofman, Ph.D. (alternate examiner)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 409-stara KAM1
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 14 fields of study the course is directly associated with, display
Course objectives
At the end of the course, students should be able to: - further develop a concept of the chemical analysis of the environment. - apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2009
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 kamenice
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 14 fields of study the course is directly associated with, display
Course objectives
To further develop a concept of the chemical analysis of the environment. To apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. To summarize behavior of pollutants in the environmental matrices and their distribution between the phases. To review the surface exchange and phase transfer processes. To distinguish between the presence, availability and activity of the compound in environmental matrices. To analyze the needs and purposes for the chemical analysis. To connect specific scientific question to the most appropriate sampling, separation and identification method. To explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. To exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. To transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Assessment methods
lectures, oral exam
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2008
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 kamenice
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 24 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
General note: Navazuje na předmět C8610 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2007
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 kamenice
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 24 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
General note: Navazuje na předmět C8610 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2006
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 kamenice
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 23 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
General note: Navazuje na předmět C6110 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2005
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 12:00–13:50 kamenice
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 23 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
General note: Navazuje na předmět C6110 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2004
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Timetable
Mon 11:00–12:50 kamenice
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 23 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
General note: Navazuje na předmět C6110 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2003
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
prof. RNDr. Jakub Hofman, Ph.D. (assistant)
Guaranteed by
RECETOX – Faculty of Science
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 23 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: Navazuje na předmět C6110 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2002
Extent and Intensity
2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Aleš Hrdlička, CSc. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
Guaranteed by
doc. RNDr. Aleš Hrdlička, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Hrdlička, CSc.
Prerequisites
C6110 course, Environmental Analytical Chemistry or equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 27 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledge level acquired in lectures on Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Problems of treatment of individual kinds of environmental samples are discussed too. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: Navazuje na předmět C6110 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2001
Extent and Intensity
2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Aleš Hrdlička, CSc. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
Guaranteed by
doc. RNDr. Aleš Hrdlička, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Hrdlička, CSc.
Prerequisites
C6110 course, Environmental Analytical Chemistry or equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 27 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledge level acquired in lectures on Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Problems of treatment of individual kinds of environmental samples are discussed too. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: Navazuje na předmět C6110 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2000
Extent and Intensity
2/0/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Aleš Hrdlička, CSc. (lecturer)
prof. RNDr. Josef Komárek, DrSc. (lecturer)
Guaranteed by
doc. RNDr. Aleš Hrdlička, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Hrdlička, CSc.
Prerequisites
Knowledges on the level of C6110 course, Environmental analytical chemistry.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 18 fields of study the course is directly associated with, display
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems. A.II. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, molecular imprints, SPME, headspace, purge and trap, membrane separations. A.III. Sample preparation: Automation, on-line techniques. Multiresidual schema, Direct methods. A.IV. GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace analysis. B.II. Flow analysis, preconcentration. B.III. Elektrochemical techniques for speciation B.IV. Speciation of elements by GC B.V. HPLC application B.VI. Other techniques
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
spring 2012 - acreditation

The information about the term spring 2012 - acreditation is not made public

Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 13 fields of study the course is directly associated with, display
Course objectives
At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2011 - only for the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 13 fields of study the course is directly associated with, display
Course objectives
At the end of the course, students should be able to: - further develop a concept of the chemical analysis of the environment. - apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods.
Syllabus
  • 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
Literature
  • FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
  • SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
Teaching methods
Course is organized in the weekly lessons.
Assessment methods
oral exam
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.

C6860 Modern Methods of Pollutant Analysis

Faculty of Science
Spring 2008 - for the purpose of the accreditation
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Klánová, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Prerequisites
C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 24 fields of study the course is directly associated with, display
Course objectives
Aim of the course is an enhancement of knowledges acquired in course C6110, Environmental Analytical Chemistry. Part engaged in organic contaminants (A. Hrdlička) deals mainly with contemporary techniques of sample preparation and with techniques hyphenating high performance separation with specific detection. Treatment of environmental samples with various matrices is discussed. In the part on inorganic contaminants (J. Komárek) requirements for trace inorganic analysis are introduced and, further, flow injection analysis, speciation of elements by electrochemical methods and by gas chromatography, applications of liquid chromatography and other techniques are discussed.
Syllabus
  • Part A: ORGANIC POLLUTANTS (by A. Hrdlička) A.I. Specific problems of organic pollutants analysis. A.II. Contemporary techniques of sample preparation. Automatized Soxhlet extraction, MAE, ASE, SFE, SPE, SPME, molecular imprints. Cloud-point extraction and polymer mediated extraction. Headspace, purge&trap. Membrane separations. Recovery estimation. A.III. Preparation of water, sediment, soil, and biota samples. Automation, on-line techniques. Multiresidual schema. Direct methods. A.IV. Hyphenated techniques: GC/FTIR, LC/FTIR, GC/OES, GC/AED, HPLC/NMR. Part B: INORGANIC POLLUTANTS (by J. Komárek) B.I. Trace inorganic analysis, practical aspects. B.II. Flow analysis, instrumentation, preconcentration. B.III. Electrochemical techniques for element speciation, ASV, electrodeposition, electrodes. B.IV. Speciation of elements by GC. Derivatization, termic desorption, detection means. Sample preparation. B.V. HPLC application, ion chromatography, GPC. Detection means. B.VI. Other techniques, LIDAR.
Literature
  • BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
  • BUFFINGTON, R. GC-Atomic Emission Spectroscopy Using Microwave Plasmas. Avandale, USA: Hewlett-Packard, 1988. ISBN 05921-90100. info
  • KALOUS, Vítěz. Metody chemického výzkumu. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 430 s. URL info
  • LOPEZ-AVILA, V. Sample Preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry. 1999, vol. 29, No 3, p. 195-230. ISSN 1040-8347. info
Assessment methods (in Czech)
přednášky, ústní zkouška
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: Navazuje na předmět C8610 Anal. chemie živ. prostředí.
The course is also listed under the following terms Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019.
  • Enrolment Statistics (recent)