C7201 Genomics - a basic course

Faculty of Science
Autumn 2015
Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Timetable
Fri 8:00–9:50 B11/205
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2014
Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Timetable
Fri 8:00–9:50 B11/205
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2013
Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Timetable
Fri 12:00–13:50 B11/205
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2024

The course is not taught in Autumn 2024

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2023

The course is not taught in Autumn 2023

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2022

The course is not taught in Autumn 2022

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
autumn 2021

The course is not taught in autumn 2021

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2020

The course is not taught in Autumn 2020

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2019

The course is not taught in Autumn 2019

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2018

The course is not taught in Autumn 2018

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
autumn 2017

The course is not taught in autumn 2017

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Fri 8:00–9:50 B11/205
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.

C7201 Genomics - a basic course

Faculty of Science
Autumn 2016

The course is not taught in Autumn 2016

Extent and Intensity
2/0/0. 1 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
doc. RNDr. Jan Hejátko, Ph.D. (lecturer)
Mgr. Markéta Pernisová, Ph.D. (lecturer)
Mgr. Kamil Růžička, Dr. rer. nat. (lecturer)
RNDr. Hana Konečná (lecturer)
Guaranteed by
prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. RNDr. Jan Hejátko, Ph.D.
Supplier department: National Centre for Biomolecular Research – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Fri 8:00–9:50 B11/205
Prerequisites
Completion of basic courses of biochemistry and/or molecular biology and genetics is a prerequisite for subscription to the course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Course objectives
At the end of the course, student will acquire theory of basic approaches in current functional genomics: Theory of basic bioinformatics tools, basics of the work with genomic databases, identification of gene function using in silico approach, targeted gene silencing and gain of function approaches, phenotype profiling (DNA, RNA and protein chips), identification and analysis of sequence specific mutants, fragmental analysis and positional cloning, etc.. Lectures are conceived as an extended introduction into practical courses (Bi7201c), in frame of which students will be able to practice most of the theory. At the end of this course, students get an overview of modern approaches of functional genomics. Students will be able to use and interpret information deposited in genomic databases and they will be oriented in the modern biology approaches and problems. Student will be able to contribute in a creative way to the further development of modern biology.
Syllabus
  • Introduction to genomics.
  • Methods of functional genomics.
  • Genome databases and basic tools of bioinformatics: (types of databases, databases search, finding of similar sequences [BLAST and FASTA], multiple sequence alignment [CLUSTALW], search in genomic databases of Arabidopsis thaliana, localization of genes on chromozomes, identification and analysis of promoter regions of individual genes [ALIBABA], virtual PCR).
  • In silico prediction of gene functions.
  • Forward and reverse genetics approaches (methods of the identification of sequence specific mutants, mutant collections and their analysis, physical and chemical mutagenesis, targeted gene silencing using RNA interference).
  • Fragmental DNA analysis and positional cloning as tools in forward genetics.
  • Gain of function approaches in identification of the gene function (activation T-DNA mutagenesis, ectopic overexpression, regulated gene expresion).
  • Phenotype profiling (cDNA, RNA and protein chips, metabolic profiling, microdissection, proteomic approaches).
  • Southern blot and DNA molecular hybridization.
  • Identification and characterization of an insertion mutation in a selected member of a complex gene family in Arabidopsis thaliana via a PCR based screen.
  • Methods for the gene expression analysis (qualitative and quantitative gene expression profiling, Genevestigator, translational and transcriptional fusions with reporter gene).
  • New approaches: Chemical genetics.
Literature
  • Hunt, S.P., Livesey, F.J. (Editors). Functional Genomics : A Practical Approach. Practical Approach Series
  • Starkey, M.P., and Elaswarapu R. (Editors). Genomics Protocols. Methods in Molecular Biology, Vol 175
Teaching methods
The main teaching methods are lectures that include particular examples from the own scientific praxis and demonstration of the solution of particular problems via individual tools of functional genomics.
Assessment methods
Type of lectures: The lectures are facultative, however, the presence of students is highly desirable for complete understanding of principles of functional genomics approaches; the teaching materials available on-line are rather supporting. Type of exam: Written exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015.
  • Enrolment Statistics (recent)