C8022 Separation Methods B
Faculty of ScienceSpring 2025
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
In-person direct teaching - Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Mon 19. 2. to Sun 26. 5. Tue 15:00–16:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2023
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Tue 14:00–15:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Tue 14:00–15:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2021
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Mon 1. 3. to Fri 14. 5. Wed 15:00–16:50 online_BCH3
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- videocon lectures will take place in the MS teams environment. if possible, download the environment application. all MU students have access to it via office 365, see "external services" in IS. i recommend learning to work with the application in advance. the use of a browser version restricts your access to some useful functions. the lecture will be recorded in mp4 format and then uploaded in the study materials in IS only for students of this course in this semester. MS teams guides: https://is.muni.cz/auth/do/mu/samostudium/pages_en/02-online.html
C8022 Separation Methods B
Faculty of ScienceSpring 2020
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2019
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Mon 18. 2. to Fri 17. 5. Tue 16:00–17:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of Sciencespring 2018
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Tue 14:00–15:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- main objective of the course is to acquaint students with separation methods based on analyte size, separation in force fields and on membranes; at the end part also with other aspects of analytical separations (chiral separation, optimisation, validation).
- Learning outcomes
- at the end of the course students should be able:
to master principles of macromolecular separation, mass spectrometry, electromigration separation and memebrane separation
to understand the wide scope of their contemporary implementation and utilisation
to optimisation of separation system, to evaluate its efficiency and to understand basic procedures of method validation. - Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2017
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
Mgr. Pavla Pospíšilová (lecturer) - Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Mon 20. 2. to Mon 22. 5. Tue 13:00–14:50 B11/235
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Separations in force field = Electromigration methods (capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)) and Mass spectrometry + Membrane separations
- Syllabus
- 1. separation of macromolecules: history, theoretical principles – macromolecule description, molecular mass; modes of macromolecular separation – SEC (size exclusion chromatography), carry-out of SEC – columns,
- 2. detectors (spectrophotometry, viscosimetry, osmometry, light scattering), HDC (hydrodynamic chromatography), FFF (field-flow fractionation) – principles, instrumentation, modes (SdFFF, ThFFF, EFFF, FFFF).
- 3. electromigration methods: history, theoretical principles – separation in outer field, separation description (ion mobility, EOF electroosmotic flow), efficiency and factors, which influence it (heat, diffusion, dispersion); arrangement of electromigration methods – injection, voltage, separation environment (capillary, membrane, gel, chip).
- 4. detectors (spectrophotometric, laser induced fluorescence, conductivity, mass spectrometry etc.); preparative modes; electrophoretic system definition and analytical information in electrophoretogram; basic modes of electromigration methods – capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), planar gel electrophoresis (GE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITF), micellar electrokinetic chromatography, thin-layer electrochromatography, capillary electrochromatography;
- 5. affinity and non-aqueous electrophoresis; mass spectrometry (as a separation method): history, theoretical principles – separation in outer field, mass spectrum, basic terms; ionisation (collision, chemical reaction, electrospray), 6. mass analysis (electric sector, magnetic sector, quadrupole, ion trap, time-of-flight analyser, orbital trap, drift cell, ion cyclotron resonance), tandem mass analysis, hybride mass analysers, ion detection (multiplier, induction), vacuum technique;
- 7. membrane separation: history, theoretical principles – non-equilibrium separation, membrane separation principles, carry-out (batch, continual), membranes (selectivity, materials, fouling), separation space – modules: membrane, spiral-wound, tubular, hollow-fibre, rotation, basic modes of membrane separations: microfiltration, ultrafiltration, nanofiltration, reversed osmosis, electrodialysis, pervaporation, membrane distillation, gas permeation, dialysis.
- 8. chiral separation: definition of chirality; optical rotation dispersity; principals of chiral separation – chiral selectors, chiral separation methods including preparative, chiral selectors free, immobilised and derivatization.
- 9. development of chromatographic method, criteria and optimisation of separation system; single and multiple criterial of separation quality evaluation; validation of analytical separation method; why and how, elemental terms –method identity, method precision, calibration, selectivity, robustness
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2016
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
Mgr. Pavla Pospíšilová (lecturer) - Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Thu 10:00–11:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Separations in force field = Electromigration methods (capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)) and Mass spectrometry + Membrane separations
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2015
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Mon 14:00–15:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Separations in force field = Electromigration methods (capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)) and Mass spectrometry + Membrane separations
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2014
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Wed 16:00–17:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Separations in force field = Electromigration methods (capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)) and Mass spectrometry + Membrane separations
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation itself will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in Czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and to be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2013
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
National Centre for Biomolecular Research – Faculty of Science
Contact Person: doc. Mgr. Jan Havliš, Dr.
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Timetable
- Wed 16:00–17:50 C14/207
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, N-CH)
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Separations in force field = Electromigration methods (capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)) and Mass spectrometry + Membrane separations
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Teaching methods
- the lecture is based on ppt presentation and its explication. presentation it-self will be available as a study material (black-and-white printable pdf with high resolution and restricted access rights). it is recommended to attend the lecture, because of the explication, which significantly extends the presentation and because there are no available textbooks in czech language covering certain parts of the subject.
- Assessment methods
- oral examination; students are required to understand and be familiar with the principles and its applications. examination consists of three basic questions, which would be during the examination expanded to let the student demonstrate the extent of topic understanding.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
C8022 Separation Methods B
Faculty of ScienceSpring 2008
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Tue 8:00–9:50 AK1
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (katharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
C8022 Separation Methods
Faculty of ScienceSpring 2007
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science - Timetable
- Tue 10:00–11:50 Kontaktujte učitele
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Liquid chromatography (LC), theory and praxis. Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Liquid-liquid extraction. Organic molecules extraction, influence of coexisting phases on extraction, the relationship between analyte structure and its partition coefficient. Extraction of chelates, extraction of ion associates, extraction solvents, influence of pH, synergism, applications of analytical reactions. Extraction flow analysis (FIA), multiple extraction systems, continual extractions, chromatography. Principle of chromatographic separatrion, relation to extraction, theoretical plate, resolution, efficiency, selectivity and retention. Basics of separation optimization, High pressure liquid chromatography (HPLC). Classification of basic separation mechanisms in liquid chromatography (liquid-liquid chromatography, LLC, liquid-solid chromatography, LSC, ion chromatography, IC, gel permeation chromatography, GPC) and their possible combination (ion exclusion in IC, adsorption in GPC etc.) Criteria of selection and optimalization of mobile phases, LC column packing, reverse phase liquid chromatography. Instrumentation of liquid chromatography, pumps, injectors, detectors (diode array detectors, DAD), fluorescence, amperometric, conductivity, refrectometric detectors, miniaturization in LC, applications. Separation of macromolecules Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods
Faculty of ScienceSpring 2006
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 11:00–12:50 02004
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Liquid chromatography (LC), theory and praxis. Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Liquid-liquid extraction. Organic molecules extraction, influence of coexisting phases on extraction, the relationship between analyte structure and its partition coefficient. Extraction of chelates, extraction of ion associates, extraction solvents, influence of pH, synergism, applications of analytical reactions. Extraction flow analysis (FIA), multiple extraction systems, continual extractions, chromatography. Principle of chromatographic separatrion, relation to extraction, theoretical plate, resolution, efficiency, selectivity and retention. Basics of separation optimization, High pressure liquid chromatography (HPLC). Classification of basic separation mechanisms in liquid chromatography (liquid-liquid chromatography, LLC, liquid-solid chromatography, LSC, ion chromatography, IC, gel permeation chromatography, GPC) and their possible combination (ion exclusion in IC, adsorption in GPC etc.) Criteria of selection and optimalization of mobile phases, LC column packing, reverse phase liquid chromatography. Instrumentation of liquid chromatography, pumps, injectors, detectors (diode array detectors, DAD), fluorescence, amperometric, conductivity, refrectometric detectors, miniaturization in LC, applications. Separation of macromolecules Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods B
Faculty of ScienceSpring 2005
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Chemistry Section – Faculty of Science - Timetable
- Mon 13:00–14:50 02016
- Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Gas chromatography (GC) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Gas chromatography, principles, typical instrumentation, optimization of the separation process. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods
Faculty of ScienceSpring 2004
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Chemistry Section – Faculty of Science - Prerequisites
- C7021 Separation Methods
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Liquid chromatography (LC), theory and praxis. Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Liquid-liquid extraction. Organic molecules extraction, influence of coexisting phases on extraction, the relationship between analyte structure and its partition coefficient. Extraction of chelates, extraction of ion associates, extraction solvents, influence of pH, synergism, applications of analytical reactions. Extraction flow analysis (FIA), multiple extraction systems, continual extractions, chromatography. Principle of chromatographic separatrion, relation to extraction, theoretical plate, resolution, efficiency, selectivity and retention. Basics of separation optimization, High pressure liquid chromatography (HPLC). Classification of basic separation mechanisms in liquid chromatography (liquid-liquid chromatography, LLC, liquid-solid chromatography, LSC, ion chromatography, IC, gel permeation chromatography, GPC) and their possible combination (ion exclusion in IC, adsorption in GPC etc.) Criteria of selection and optimalization of mobile phases, LC column packing, reverse phase liquid chromatography. Instrumentation of liquid chromatography, pumps, injectors, detectors (diode array detectors, DAD), fluorescence, amperometric, conductivity, refrectometric detectors, miniaturization in LC, applications. Separation of macromolecules Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer)
doc. RNDr. Karel Šlais, DrSc. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Chemistry Section – Faculty of Science - Prerequisites
- C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Liquid chromatography (LC), theory and praxis. Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Liquid-liquid extraction. Organic molecules extraction, influence of coexisting phases on extraction, the relationship between analyte structure and its partition coefficient. Extraction of chelates, extraction of ion associates, extraction solvents, influence of pH, synergism, applications of analytical reactions. Extraction flow analysis (FIA), multiple extraction systems, continual extractions, chromatography. Principle of chromatographic separatrion, relation to extraction, theoretical plate, resolution, efficiency, selectivity and retention. Basics of separation optimization, High pressure liquid chromatography (HPLC). Classification of basic separation mechanisms in liquid chromatography (liquid-liquid chromatography, LLC, liquid-solid chromatography, LSC, ion chromatography, IC, gel permeation chromatography, GPC) and their possible combination (ion exclusion in IC, adsorption in GPC etc.) Criteria of selection and optimalization of mobile phases, LC column packing, reverse phase liquid chromatography. Instrumentation of liquid chromatography, pumps, injectors, detectors (diode array detectors, DAD), fluorescence, amperometric, conductivity, refrectometric detectors, miniaturization in LC, applications. Separation of macromolecules Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods
Faculty of ScienceSpring 2002
- Extent and Intensity
- 2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer)
doc. RNDr. Karel Šlais, DrSc. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Chemistry Section – Faculty of Science - Prerequisites
- C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Liquid chromatography (LC), theory and praxis. Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Liquid-liquid extraction. Organic molecules extraction, influence of coexisting phases on extraction, the relationship between analyte structure and its partition coefficient. Extraction of chelates, extraction of ion associates, extraction solvents, influence of pH, synergism, applications of analytical reactions. Extraction flow analysis (FIA), multiple extraction systems, continual extractions, chromatography. Principle of chromatographic separatrion, relation to extraction, theoretical plate, resolution, efficiency, selectivity and retention. Basics of separation optimization, High pressure liquid chromatography (HPLC). Classification of basic separation mechanisms in liquid chromatography (liquid-liquid chromatography, LLC, liquid-solid chromatography, LSC, ion chromatography, IC, gel permeation chromatography, GPC) and their possible combination (ion exclusion in IC, adsorption in GPC etc.) Criteria of selection and optimalization of mobile phases, LC column packing, reverse phase liquid chromatography. Instrumentation of liquid chromatography, pumps, injectors, detectors (diode array detectors, DAD), fluorescence, amperometric, conductivity, refrectometric detectors, miniaturization in LC, applications. Separation of macromolecules Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods
Faculty of ScienceSpring 2001
- Extent and Intensity
- 2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. Ing. Pavel Janoš, CSc. (lecturer)
doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer)
doc. RNDr. Karel Šlais, DrSc. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Chemistry Section – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Solvent Extraction, Discontinuous and Continuous Extraction Methods, SFE, SPE, Ion Exchange, Physical Chemical Principles of Chromatographic Separations, Gas Chromatography, Liquid Chromatography, Ion chromatography, Analytical Electrophoresis, Field Flow Fractionation, Size Exclusion Chromatography.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods
Faculty of ScienceSpring 2000
- Extent and Intensity
- 2/0/0. 3 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Pavel Janoš, CSc. (lecturer)
doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer)
doc. RNDr. Karel Šlais, DrSc. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Chemistry Section – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, M-CH)
- Analytical Chemistry (programme PřF, N-CH)
- Syllabus
- Solvent Extraction, Discontinuous and Continuous Extraction Methods, SFE, SPE, Ion Exchange, Physical Chemical Principles of Chromatographic Separations, Gas Chromatography, Liquid Chromatography, Ion chromatography, Analytical Electrophoresis, Field Flow Fractionation, Size Exclusion Chromatography.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2012
The course is not taught in Spring 2012
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška je založena na prezentaci v PPT, jejíž tisknutelná kopie ve formě PDF je studentům k dipozici. předmět je ukončen ústní zkouškou
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2011
The course is not taught in Spring 2011
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška je založena na prezentaci v PPT, jejíž tisknutelná kopie ve formě PDF je studentům k dipozici. předmět je ukončen ústní zkouškou
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2010
The course is not taught in Spring 2010
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška je založena na prezentaci v PPT, jejíž tisknutelná kopie ve formě PDF je studentům k dipozici. předmět je ukončen ústní zkouškou
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2009
The course is not taught in Spring 2009
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška je založena na prezentaci v PPT, jejíž tisknutelná kopie ve formě PDF je studentům k dipozici. předmět je ukončen ústní zkouškou
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
doc. RNDr. Bc. Jiří Pazourek, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Bc. Jiří Pazourek, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science - Prerequisites
- C7021 Separation Methods
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Liquid chromatography (LC), theory and praxis. Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow frakcionation (FFF)) + elektroforetic methods = capillary zone electrophoresis (CZE), izotachophoresis (ITP), micelat electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Liquid-liquid extraction. Organic molecules extraction, influence of coexisting phases on extraction, the relationship between analyte structure and its partition coefficient. Extraction of chelates, extraction of ion associates, extraction solvents, influence of pH, synergism, applications of analytical reactions. Extraction flow analysis (FIA), multiple extraction systems, continual extractions, chromatography. Principle of chromatographic separatrion, relation to extraction, theoretical plate, resolution, efficiency, selectivity and retention. Basics of separation optimization, High pressure liquid chromatography (HPLC). Classification of basic separation mechanisms in liquid chromatography (liquid-liquid chromatography, LLC, liquid-solid chromatography, LSC, ion chromatography, IC, gel permeation chromatography, GPC) and their possible combination (ion exclusion in IC, adsorption in GPC etc.) Criteria of selection and optimalization of mobile phases, LC column packing, reverse phase liquid chromatography. Instrumentation of liquid chromatography, pumps, injectors, detectors (diode array detectors, DAD), fluorescence, amperometric, conductivity, refrectometric detectors, miniaturization in LC, applications. Separation of macromolecules Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static ligth scattering (LS), Low-angle laser ligth scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques. Electrophoretic methods Types of molecules that could be analyzed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modificators - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parametrs: capillary, temeprature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: hea dissipation, electroosmotic flow, oncaillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages od capillary electrophoresis. Evaluation of electropherograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrohoresis in nonaqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška Zk
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.chemi.muni.cz/~pazourek/student/sepmetody.html
C8022 Separation Methods B
Faculty of Sciencespring 2012 - acreditation
The course is not taught in spring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- C7021 Separation Methods A
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška je založena na prezentaci v PPT, jejíž tisknutelná kopie ve formě PDF je studentům k dipozici. předmět je ukončen ústní zkouškou
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
C8022 Separation Methods B
Faculty of ScienceSpring 2011 - only for the accreditation
The course is not taught in Spring 2011 - only for the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Jan Havliš, Dr. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Havliš, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science - Prerequisites
- C7021 Separation Methods
C3100 + C4050 Analytical chemistry (at least C1660) C7021 Separation methods A - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 9 fields of study the course is directly associated with, display
- Course objectives
- Separation of macromoleculs (gel permeation chromatography (GPC), light scattering, hydrodynamic chromatography (HDC), field-flow fractionation (FFF)). + Gas chromatography (GC), theory and praxis. + Electromigration methods = capillary zone electrophoresis (CZE), isotachophoresis (ITP), micellar electrokinetic chromatography (MEKC), gel capillary electrophoresis (GCE)
- Syllabus
- Separation of macromolecules
- Macromolecules: synthetic and biological. Radius of gyration. Relative molecular mass, polydispersity. Optical detection, viscosimetry. Ultracentrifugation, gel capillary electrophoresis. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Separation methods for macromolecules: Gel permeation chromatography (GPC), Hydrodynamic chromatography (HDC), Field-flow fractionation (FFF). Special detection techniques. Static light scattering (LS), Low-angle laser light scattering (LALLS), multi-angle laser light scattering (MALLS). Hyphenation of separation and detection techniques.
- Gas chromatography
- Principles of gas chromatography, diffusion in gas phase, description of compound distribution between phases and character of compounds interaction in stationary and mobile phases. The influence of temperature and pressure of gas characteristics in gas chromatography. Basic components of gas chromatograph, sample injection. Thermo conductivity detection in gas chromatography (catharometer). Flame ionization detection (FID). Electron capture detector (ECD). Photoionisation detector, conductivity detector. Types of columns in gas chromatography, stationary phase support. Capillary columns in gas chromatography, influence of inner diameter of capillary and the film thickness on separation. Adsorption gas chromatography - common adsorbents. Adsorbed and covalently bonded stationary phases in gas chromatography - their properties, preparation and selection. Requirements for gas chromatography columns. Gas chromatography with programmed temperature - purpose, temperature influence on separation and characterization of retention.
- Electromigration methods
- Types of molecules that could be analysed by capillary electrophoresis. Proteins. Polypeptides charge. Electrophoretic titration curve. Physical principles of capillary electrophoresis - electrophoretical mobility. Electroosmotic flow - electroosmotic pump, electroosmotic flow modifiers - surfactants. Techniques of capillary electrophoresis: capillary zone electrohoresis (free solution capillary electrophoresis), capillary izotachophoresis (CITP), Capillary Gel Electrophoresis, Micellar electrokinetic chromatography, capillary electrochromatography, capillary izoelectric focusing, discontinual electrophoresis. Basics of instrumentation - experimental parameters: capillary, temperature control, detectors (indirect detection), sample introduction (injection), reduction of band broadening. Optimization: heat dissipation, electroosmotic flow, on-capillary detection, molecular diffusion, band broadening due to injection. Evaluation of electrophoretic efficiency, advantages of capillary electrophoresis. Evaluation of electrophoretograms: qualitative and quantitative. Limit of detection. Validation of methods of CE. SDS - Page electrophoresis, capillary ion electrophoresis (CIE), indirect detection, chiral separation, capillary electrophoresis in non-aqueous solvents, DNA analysis, laser induced fluorescence in capillary electrophoresis, capillary electrophoresis - mass spectrometry
- Literature
- CHURÁČEK, Jaroslav and Pavel JANDERA. Separace látek : kapalinová vysokoúčinná kolonová chromatografie. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 140 s. info
- CHURÁČEK, Jaroslav. Analytická separace látek. 1. vyd. Praha: Státní nakladatelství technické literatury, 1990, 384 s. ISBN 80-03-00569-8. info
- POPL, Milan and Jaroslav KUBÁT. Separace látek. 3. přeprac. vyd. Praha: Vysoká škola chemicko-technologická, 1986, 171 s. info
- VESPALEC, Radim. Chirální separace v kapalném prostředí. 1995, 1 svazek. info
- Assessment methods (in Czech)
- přednáška je založena na prezentaci v PPT, jejíž tisknutelná kopie ve formě PDF je studentům k dipozici. předmět je ukončen ústní zkouškou
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (recent)