C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2024
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
Vyučováno kontaktně - Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Mgr. Hugo Semrád, Ph.D. (cvičící) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- St 8:00–9:50 B11/335
- Rozvrh seminárních/paralelních skupin:
C9920/02: Út 16:00–16:50 C12/311, M. Munzarová, H. Semrád - Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Hlavním cílem předmětu je pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; dále pak osvojení principu výpočetní metody HMO a osvojení základních pravidel kvalitativní teorie MO.
- Výstupy z učení
- Na konci kurzu budou mít studenti následující dovednosti: porozumění základním kvantově chemickým konceptům; pochopení principů výpočetní kvantové chemie a vytváření orbitálně-interakčních diagramů jednoduchých reálných molekul.
- Osnova
- 1. Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška založená ze 75% na praktických dovednostech procvičených v semináři, z 25% z odpřednášené teorie. Teoretické otázky budou motivovány úlohami "Multiple-choice questions" na konci kapitol Loweho učebnice z oblastí, které probereme. Studenti mají možnost dobrovolně absolvovat ústní dozkoušení, při němž známka z písemné části může být zlepšena nebo nezměněna, nemůže být zhoršena.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2023
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Mgr. Hugo Semrád, Ph.D. (cvičící) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Čt 12:00–13:50 B11/305
- Rozvrh seminárních/paralelních skupin:
C9920/02: Út 17:00–17:50 A08/309, H. Semrád - Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Hlavním cílem předmětu je pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; dále pak osvojení principu výpočetní metody HMO a osvojení základních pravidel kvalitativní teorie MO.
- Výstupy z učení
- Na konci kurzu budou mít studenti následující dovednosti: porozumění základním kvantově chemickým konceptům; pochopení principů výpočetní kvantové chemie a vytváření orbitálně-interakčních diagramů jednoduchých reálných molekul.
- Osnova
- 1. Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška založená ze 75% na praktických dovednostech procvičených v semináři, z 25% z odpřednášené teorie. Teoretické otázky budou motivovány úlohami "Multiple-choice questions" na konci kapitol Loweho učebnice z oblastí, které probereme. Studenti mají možnost dobrovolně absolvovat ústní dozkoušení, při němž známka z písemné části může být zlepšena nebo nezměněna, nemůže být zhoršena.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2022
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Mgr. Hugo Semrád, Ph.D. (cvičící) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Út 15:00–16:50 B11/305
- Rozvrh seminárních/paralelních skupin:
C9920/02: Út 17:00–17:50 C12/311, H. Semrád - Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Hlavním cílem předmětu je pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; dále pak osvojení principu výpočetní metody HMO a osvojení základních pravidel kvalitativní teorie MO.
- Výstupy z učení
- Na konci kurzu budou mít studenti následující dovednosti: porozumění základním kvantově chemickým konceptům; pochopení principů výpočetní kvantové chemie a vytváření orbitálně-interakčních diagramů jednoduchých reálných molekul.
- Osnova
- 1. Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava). Příklady ZK testů jsou uloženy v ISu.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2021
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Út 8:00–9:50 C12/311, Út 15:00–15:50 C12/311
- Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Hlavním cílem předmětu je pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; dále pak osvojení principu výpočetní metody HMO a osvojení základních pravidel kvalitativní teorie MO.
- Výstupy z učení
- Na konci kurzu budou mít studenti následující dovednosti: porozumění základním kvantově chemickým konceptům; pochopení principů výpočetní kvantové chemie a vytváření orbitálně-interakčních diagramů jednoduchých reálných molekul.
- Osnova
- 1. Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava). Příklady ZK testů jsou uloženy v ISu.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Předmět je vyučován každoročně.
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2020
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Mgr. Hugo Semrád, Ph.D. (cvičící) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Út 12:00–13:50 B11/335
- Rozvrh seminárních/paralelních skupin:
C9920/02: Čt 17:00–17:50 B11/205, M. Munzarová - Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Hlavním cílem předmětu je pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; dále pak osvojení principu výpočetní metody HMO a osvojení základních pravidel kvalitativní teorie MO.
- Výstupy z učení
- Na konci kurzu budou mít studenti následující dovednosti: porozumění základním kvantově chemickým konceptům; pochopení principů výpočetní kvantové chemie a vytváření orbitálně-interakčních diagramů jednoduchých reálných molekul.
- Osnova
- 1. Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava). Příklady ZK testů jsou uloženy v ISu.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Mgr. Hugo Semrád, Ph.D. (cvičící)
Mgr. Jakub Stošek, Ph.D. (pomocník) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Po 13:00–14:50 B11/335
- Rozvrh seminárních/paralelních skupin:
C9920/02: Čt 17:00–17:50 C12/311, M. Munzarová - Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Hlavním cílem předmětu je pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; dále pak osvojení principu výpočetní metody HMO a osvojení základních pravidel kvalitativní teorie MO.
- Výstupy z učení
- Na konci kurzu budou mít studenti následující dovednosti: porozumění základním kvantově chemickým konceptům; pochopení principů výpočetní kvantové chemie a vytváření orbitálně-interakčních diagramů jednoduchých reálných molekul.
- Osnova
- 1. Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava). Příklady ZK testů jsou uloženy v ISu.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2018
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Po 1. 10. až Pá 14. 12. Út 12:00–13:50 B11/335
- Rozvrh seminárních/paralelních skupin:
C9920/02: Po 17. 9. až Pá 14. 12. St 15:00–15:50 C12/311, M. Munzarová - Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 8 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se ojednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Výstupy z učení
- Dovednost vytvářet orbitálně-interakční diagramy jednoduchých molekul, porozumění základním kvantově chemickým konceptům.
- Osnova
- . Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava). Příklady ZK testů jsou uloženy v ISu.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2017
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Po 18. 9. až Pá 15. 12. Út 14:00–16:50 C12/311
- Předpoklady
- Jakýkoli z VŠ kurzů matematiky, stačí v rozsahu běžném pro studenty CH nebo BCH, včetně matematiky pro studenty programu se zaměřením na vzdělávání.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 8 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se ojednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Výstupy z učení
- Dovednost vytvářet orbitálně-interakční diagramy jednoduchých molekul, porozumění základním kvantově chemickým konceptům.
- Osnova
- . Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava). Příklady ZK testů jsou uloženy v ISu.
- Informace učitele
- Co nejkonkrétnější vyjádření ke kurzu (po jeho skončení a uzavření zkouškou) prostřednictvím Předmětové ankety ISu je maximálně vítáno. Anonymní odpovědi budou průběžně zveřejňovány v ISu.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2016
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Mgr. Hugo Semrád, Ph.D. (cvičící)
doc. Mgr. Jana Pavlů, Ph.D. (pomocník)
Mgr. Jakub Stošek, Ph.D. (pomocník) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Po 19. 9. až Ne 18. 12. St 8:00–10:50 C12/311
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 8 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- . Základní pojmy kvantové mechaniky 1.1 Co je kvantová mechanika (QM), stav systému v klasické a kvantové mechanice 1.2 Pojem funkce jedné proměnné, Postulát o vlnové funkci 1.3 Jak získat informace obsažené v Ψ? 1.4 Dodatek k Postulátu o vlnové funkci: Bornova pravděpodobnostní interpretace 1.5 Hodnoty fyzikálních veličin, operátory, vlastní funkce a vlastní hodoty 1.6 Důležité QM operátory 1.7 Postulát o operátorech, základní vlastnosti QM operátorů 2. Atom vodíku 2.1 Schrödingerova rovnice pro elektron v poli jádra 2.2 Symetrie problému, sférické polární souřadnice, atomové jednotky 2.3 Dovolené hodnoty energie a atomová spektra 2.4 Názvosloví vlnových funkcí 2.5 Popis vlastních funkcí: Funkce 1s, 2s a 2p 2.6 Radiální hustota pravděpodobnosti 3. Atomy s více elektrony 3.1 Orbitální aproximace, součet energií orbitalů vs. celková energie 3.2 Matematický popis a názvosloví atomových orbitalů 3.3 Výměnná symetrie VF, elektronový spin 3.4 Elektronová konfigurace Li, antisymetrie VF (Pauliho princip) 3.5 Elektronové konfigurace atomů: Aufbau proces, Klechowského pravidlo 3.6 Hundovo pravidlo, vnitřní a valenční elektrony 3.7 Parametry mnohaelektronových atomů: Stínění, efektivní náboj a Slaterova pravidla, Orbitální poloměry a velikost atomu 3.8 Vývoj atomových vlastností v PT– efektivní náboje, atomové poloměry, orbitální energie 3.9 Vztahy k měřitelným vlastnostem: Ionizační potenciál a elektronová afinita, elektronegativita 4. Interakce dvou atomových orbitalů na různých centrech 4.1 Základní aproximace: Bornova-Oppenheimerova, orbitální, MO-LCAO 4.2 Konstrukce MO: Interakce dvou identických AO, interakce dvou různých AO, orbitaly s nulovým překryvem 4.3 Aplikace na některé jednoduché dvouatomové molekuly: Pravidla pro zaplňování hladin, systémy se 2, 4, 1 a 3 elektrony 4.4 Překryv a symetrie: Překryv 1s/1s, překryv 2p/2p, překryv 1s/2p, překryvové integrály nulové díky symetrii, elementy symetrie 4.5 Aplikace konceptů symetrie na některé polyatomické molekuly: / separace, MO ethylenu a formaldehydu 5. Metoda fragmentových molekulových orbitalů (FMO), interakce mezi dvěma FMO 5.1 MO některých modelových systémů, Hn: Čtvercově planární a obdélníková H4, lineární H3 a H4, triangulární H3, tetraedrální H4, hexagonální H6 5.2 Vliv elektronegativity na tvar a energii MO 5.3 Lineární molekuly AH2: symetrické vlastnosti fragmentových orbitalů, MO a aplikace na BeH2 5.4 Trigonálně planární molekuly AH3: symetrické vlastnosti FMO, MO a aplikace na BH3 5.5 Tetraedrické molekuly AH4: Symetrické vlastnosti fragmentových FMO, MO a aplikace na CH4 6. Interakce mezi třemi fragmentovými orbitaly 7.1 Pravidla pro interakci tří orbitalů: formulace problému, pravidla pro konstrukci MO 7.2 Elektronová struktura molekul AH: formulace problému a tvary MO, elektronová struktura LiH, BH a FH 7.3 Lomené molekuly AH2: symetrie FMO, interakční diagram a MO pro H2O 7.4 Pyramidální molekuly AH3: symetrie FMO, interakční diagram a MO pro NH3 7. Interakce mezi čtyřmi fragmentovými orbitaly a MO velkých molekul 7.1 Homonukleární diatomické molekuly A2 7.2 Heteronukleární diatomické molekuly AB 7.3 MO acetylenu, ethylenu a ethanu 7.4 Konjugované polyeny 8. Orbitální korelační diagramy: Modelové systémy H3+ a H3- 8.1 Pravidla pro kreslení orbitálních korelačních diagramů 8.2 Orbitální korelační diagram pro ohýbání H3 8.3 Geometrie H3+ 8.4 Geometrie H3− a pravidlo nejvyššího obsazeného MO 9. Geometrie molekul AH2 a AH3 9.1 Molekuly AH2: Orbitální korelační diagram mezi lineární a lomenou strukturou 9.2 Geometrie molekul AH2 9.3 Molekuly AH3: Orbitální korelační diagram mezi trigonální a pyramidální strukturou, geometrie molekul AH3 10. Úvod do studia chemické reaktivity 3.3.1 Popis chemické reakce 3.3.2 Aproximace hraničních orbitalů 3.3.3 Cykloadiční reakce Literatura: Y. Jean, F. Volatron, An Introduction to Molecular Orbitals, Oxford University Press, Oxford, 1993. John P. Lowe: Quantum Chemistry - 2nd ed, Academic Press, San Diego, California, 1993. Obě učebnice jsou zveřejněny ve studijních materiálech ISu. Zkouška: Písemná + ústní v rámci řádného ZK období. Příklady písemných částí lze nalézt v učebních materiálech ISu, nebudou se vyskytovat úlohy na obyčejnou Hückelovu metodu (letos přesunuta do C9930), rozšířena bude „orbitální“ část. Ústní část: dvě otázky z podrobnější úrovně členění.
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava)
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2015
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Cina Foroutannejad, Ph.D. (pomocník) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- St 11:00–13:50 C12/311
- Předpoklady
- Úspěšné absolvování kurzu C1020 "Obecná chemie".
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 8 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- C9920 Úvod do kvantové chemie a elektronové struktury molekul: Syllabus pro období podzim 2014 A. Základy popisu atomů 1. Základní pojmy kvantové mechaniky. Proč potřebujeme vlnovou funkci? Co je Schrödingerova rovnice a jak se řeší? Pojmy operátor, vlastní funkce a vlastní hodnota. Hermitovské operátory a jejich vlastnosti. Operátor polohy, operátor hybnosti, operátor čtverce momentu hybnosti, operátor průmětu momentu hybnosti do osy z, operátor energie – tzv. Hamiltonián. Dvojice komutujících operátorů a existence společných vlastních hodnot. 2. Atom vodíku. Hamiltonián. Přechod ke sférickým souřadnicím. Vlastní stavy pro záporné a kladné hodnoty energie. Degenerace hladin. Vlastní funkce – atomové orbitaly. Radiální a angulární části orbitalů, vztah k operátoru momentu hybnosti. Proč jsou hodnoty některých vlastních komplexní čísla a jak se dostaneme k reálným orbitalům s, px, py, pz, ... aneb princip lineární kombinace. Jak rozumět znázorňování orbitalů, co znamená pojem orthogonality a k čemu ho lze využít? 3. Atomy s více elektrony. Popis mikrosvěta pomocí atomových jednotek. Hamiltonián pro atom He a jeho možná zjednodušení. Význam pojmu orbital pro atom s více elektrony. Jednoelektronové funkce a energie vs. celková mnohaelektronová funkce a energie. Výměnná symetrie VF, elektronový spin, antisymetrie. Elektronová konfigurace Li, Pauliho princip výlučnosti. Slaterův determinant, pojem Slaterovského orbitalu. Aufbau princip, Klechowského a Hundovo pravidlo. Vývoj atomových vlastností v periodickém systému. B. Základy popisu molekul 4. Molekula H2+. Hamiltonián pro systém tří částic. Bornova-Oppenheimerova aproximace. Metoda molekulových orbitalů (MO) jako lineární kombinace atomových orbitalů (LCAO). Řešení (a) využitím symetrie a (b) variační metodou. Překryvový integrál, interakční integrál jako funkce mezijaderné vzdálenosti. Sekulární rovnice, výsledné energie a vlnové funkce. Grafické reprezentace MO, symetrické vlastnosti, pojem vazebného a protivazebného MO. Znázornění pomocí interakčního diagramu. 5. Jednoduchá Hückelova metoda. Aproximace nezávislých elektronů. Hückelův determinant, veličiny a . Vlastní hodnoty a funkce. Diagramy pro energiové hladiny. Elektronová struktura planárních uhlovodíků. Nábojové hustoty, elektronové hustoty, HMO energie: vztah k experimentálním veličinám. Princip rozšířené Hückelovy metody (EHT), báze, překryvové a interakční integrály, parametr K, vlastní hodnoty a funkce. Smysl EHT v současné kvantověchemické praxi. 6. Symetrie molekul. Grupy symetrie molekul. Matice a jejich násobení. Maticová reprezentace grupy symetrie pro molekulu NH3. Rozklad redukovateln0 reprezentace na neredukovatelné reprezentace. Označení neredukovatelných reprezentací. Symetricky přizpůsobené lineární kombinace. Užití charakterových tabulek: nulové a nenulové překryvové integrály. Symetricky řízená orbitální interakce. C. Orbitální interakce 7. Interakce mezi dvěma atomovými orbitaly: Molekuly A2 a AB. Interakce dvou identických a rozdílných AO. Obsazování hladin, celková energie. Překryv a symetrie. Interakce mezi čtyřmi AO. Dvojatomové molekuly A2 a AB: bázové funkce, a MO, s-p interakce, interakční diagramy. Elektronové konfigurace molekul H2+, H2, He2+, He2, Li2, Be2, B2, C2, N2+, N2, O2+, O2, F2, Ne2: disociační energie, vazebné délky a vibrační frekvence. 8. Interakce mezi dvěma fragmentovými orbitaly: Molekuly AH2. Lineární a lomené molekuly AH2: pojem fragmentového orbitalu, elementy symetrie, MO, korelační diagram mezi lineární a lomenou geometrií, geometrie AH2 molekul. Aplikace na molekuly LiH2, BeH2, BH2, CH2, NH2, H2O+, H2O. 9. Molekuly AH3 a AH4. MO trigonálních molekul AH3. Orbitální korelační diagram pro trigonálně planární a pyramidální AH3. Planární nebo pyramidální geometrie? Molekuly BH3, BH4- a NH3. Planární molekuly AH3: tvar trojhelníku, tvar „T“, nebo tvar „Y“ ? Molekuly ClF3 a BrF3. Tetraedrické molekuly AH4. Tvary AH4 systémů: tetraedrické, čtvercově pyramidální, čtvercově planární a „butterfly“ struktury. Literatura: John P. Lowe: Quantum Chemistry - 2nd ed, Academic Press, San Diego, California, 1993. Y. Jean, F. Volatron, An Introduction to Molecular Orbitals, Oxford University Press, Oxford, 1993. Tyto knihy jsou k dispozici v Knihovně univerzitního kampusu, police 544.3. Loweho učebnice je taktéž ve studijních materiálech na ISu. Časová organizace výuky: Čt 16.00-17.30 přednáška (nepovinná) Čt 17.45-18.35 seminář (povinná aktivní účast, tolerovány jsou 2 neomluvené absence, omluvenky prostřednictvím studijního oddělení) Konzultace: Dle domluvy na marketa@chemi.muni.cz Zkouška: Písemná + ústní v rámci řádného ZK období.
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava)
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2014
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
Cina Foroutannejad, Ph.D. (pomocník) - Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Čt 16:00–18:50 C12/311
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- C9920 Úvod do kvantové chemie a elektronové struktury molekul: Syllabus pro období podzim 2014 A. Základy popisu atomů 1. Základní pojmy kvantové mechaniky. Proč potřebujeme vlnovou funkci? Co je Schrödingerova rovnice a jak se řeší? Pojmy operátor, vlastní funkce a vlastní hodnota. Hermitovské operátory a jejich vlastnosti. Operátor polohy, operátor hybnosti, operátor čtverce momentu hybnosti, operátor průmětu momentu hybnosti do osy z, operátor energie – tzv. Hamiltonián. Dvojice komutujících operátorů a existence společných vlastních hodnot. 2. Atom vodíku. Hamiltonián. Přechod ke sférickým souřadnicím. Vlastní stavy pro záporné a kladné hodnoty energie. Degenerace hladin. Vlastní funkce – atomové orbitaly. Radiální a angulární části orbitalů, vztah k operátoru momentu hybnosti. Proč jsou hodnoty některých vlastních komplexní čísla a jak se dostaneme k reálným orbitalům s, px, py, pz, ... aneb princip lineární kombinace. Jak rozumět znázorňování orbitalů, co znamená pojem orthogonality a k čemu ho lze využít? 3. Atomy s více elektrony. Popis mikrosvěta pomocí atomových jednotek. Hamiltonián pro atom He a jeho možná zjednodušení. Význam pojmu orbital pro atom s více elektrony. Jednoelektronové funkce a energie vs. celková mnohaelektronová funkce a energie. Výměnná symetrie VF, elektronový spin, antisymetrie. Elektronová konfigurace Li, Pauliho princip výlučnosti. Slaterův determinant, pojem Slaterovského orbitalu. Aufbau princip, Klechowského a Hundovo pravidlo. Vývoj atomových vlastností v periodickém systému. B. Základy popisu molekul 4. Molekula H2+. Hamiltonián pro systém tří částic. Bornova-Oppenheimerova aproximace. Metoda molekulových orbitalů (MO) jako lineární kombinace atomových orbitalů (LCAO). Řešení (a) využitím symetrie a (b) variační metodou. Překryvový integrál, interakční integrál jako funkce mezijaderné vzdálenosti. Sekulární rovnice, výsledné energie a vlnové funkce. Grafické reprezentace MO, symetrické vlastnosti, pojem vazebného a protivazebného MO. Znázornění pomocí interakčního diagramu. 5. Jednoduchá Hückelova metoda. Aproximace nezávislých elektronů. Hückelův determinant, veličiny a . Vlastní hodnoty a funkce. Diagramy pro energiové hladiny. Elektronová struktura planárních uhlovodíků. Nábojové hustoty, elektronové hustoty, HMO energie: vztah k experimentálním veličinám. Princip rozšířené Hückelovy metody (EHT), báze, překryvové a interakční integrály, parametr K, vlastní hodnoty a funkce. Smysl EHT v současné kvantověchemické praxi. 6. Symetrie molekul. Grupy symetrie molekul. Matice a jejich násobení. Maticová reprezentace grupy symetrie pro molekulu NH3. Rozklad redukovateln0 reprezentace na neredukovatelné reprezentace. Označení neredukovatelných reprezentací. Symetricky přizpůsobené lineární kombinace. Užití charakterových tabulek: nulové a nenulové překryvové integrály. Symetricky řízená orbitální interakce. C. Orbitální interakce 7. Interakce mezi dvěma atomovými orbitaly: Molekuly A2 a AB. Interakce dvou identických a rozdílných AO. Obsazování hladin, celková energie. Překryv a symetrie. Interakce mezi čtyřmi AO. Dvojatomové molekuly A2 a AB: bázové funkce, a MO, s-p interakce, interakční diagramy. Elektronové konfigurace molekul H2+, H2, He2+, He2, Li2, Be2, B2, C2, N2+, N2, O2+, O2, F2, Ne2: disociační energie, vazebné délky a vibrační frekvence. 8. Interakce mezi dvěma fragmentovými orbitaly: Molekuly AH2. Lineární a lomené molekuly AH2: pojem fragmentového orbitalu, elementy symetrie, MO, korelační diagram mezi lineární a lomenou geometrií, geometrie AH2 molekul. Aplikace na molekuly LiH2, BeH2, BH2, CH2, NH2, H2O+, H2O. 9. Molekuly AH3 a AH4. MO trigonálních molekul AH3. Orbitální korelační diagram pro trigonálně planární a pyramidální AH3. Planární nebo pyramidální geometrie? Molekuly BH3, BH4- a NH3. Planární molekuly AH3: tvar trojhelníku, tvar „T“, nebo tvar „Y“ ? Molekuly ClF3 a BrF3. Tetraedrické molekuly AH4. Tvary AH4 systémů: tetraedrické, čtvercově pyramidální, čtvercově planární a „butterfly“ struktury. Literatura: John P. Lowe: Quantum Chemistry - 2nd ed, Academic Press, San Diego, California, 1993. Y. Jean, F. Volatron, An Introduction to Molecular Orbitals, Oxford University Press, Oxford, 1993. Tyto knihy jsou k dispozici v Knihovně univerzitního kampusu, police 544.3. Loweho učebnice je taktéž ve studijních materiálech na ISu. Časová organizace výuky: Čt 16.00-17.30 přednáška (nepovinná) Čt 17.45-18.35 seminář (povinná aktivní účast, tolerovány jsou 2 neomluvené absence, omluvenky prostřednictvím studijního oddělení) Konzultace: Dle domluvy na marketa@chemi.muni.cz Zkouška: Písemná + ústní v rámci řádného ZK období.
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava)
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2013
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- Út 7:00–9:50 C12/311
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 13 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní pojmy kvantové mechaniky.Pojem vlnové funkce, postulát o vlnové funkci. Obecná stacionární Schrodingerova rovnice. Pojmy operátor, vlastní funkce operátoru, vlastní hodnota příslušející operátoru a vlastní funkci. Hermitovský operátor: definice a vlastnosti. Operátor polohy, operátor hybnosti, operátor čtverce momentu hybnosti, operátor průmětu momentu hybnosti do osy z, operátor energie - tzv. Hamiltonián. Pojem dvojice komutujících operátorů, existence společné úplné množiny vlastních funkcí pro dvojici komutujících operátorů. 2. Atom vodíku.Hamiltonián pro atom vodíku s fixním jádrem resp. se zavedením redukované hmotnosti. Souřadnice pro sféricky symetrický potenciál. Vlastní stavy pro záporné a kladné hodnoty energie. Pojem degenerace, vlastní funkce. Radiální faktory, radiální distribuční funkce. Angulární faktory jako vlastní funkce operátorů momentu hybnosti. Komplexní a reálné angulární funkce. Způsoby znázorňování orbitalů, pojem orthogonality. 3. Atomy s více elektrony. Atomové jednotky. Hamiltonián pro atom He. Význam pojmu orbital. Celková VF ve vztahu k jednoelektronovým VF. Celková energie ve vztahu k jednoelektronovým energiím. Výměnná symetrie VF, elektronový spin, antisymetrie. Elektronová konfigurace Li, Pauliho princip výlučnosti. Slaterův determinant. Pojem Slaterovského orbitalu. Aufbau princip, Klechowského a Hundovo pravidlo. Vývoj atomových vlastností v periodickém systému. 4. Molekula H2+. Hamiltonián pro systém tří částic. Bornova-Oppenheimerova aproximace tvaru vlnové funkce. Metoda molekulových orbitalů (MO) jako lineární kominace atomových orbitalů (LCAO). Řešení (a) využitím symetrie a (b) variační metodou. Překryvový integrál, interakční integrál jako funkce mezijaderné vzdálenosti. Sekulární rovnice, výsledné energie a vlnové funkce. Grafické reprezentace MO, symetrické vlastnosti, pojem vazebného a protivazebného MO. Znázornění pomocí interakčního diagramu. 5. Jednoduchá Hückelova metoda. Aproximace nezávislých pi-elektronů. Hückelův determinant, veličiny alfa a beta. Vlastní hodnoty a funkce. Diagramy pro energiové hladiny. Nábojové hustoty, pi elektronové hustoty, HMO energie: vztah k experimentálním veličinám. Princip rozšířené Hückelovy metody, báze, překryvové a interakční integrály, parametr K, vlastní hodnoty a funkce. Elektronová struktura planárních uhlovodíků. 6. Symetrie molekul. Grupy symetrie molekul. Matice a jejich násobení. Maticová reprezentace grupy symetrie. Redukovatelná a neredukovatelná reprezentace. Označení neredukovatelných reprezentací. Symetricky přizpůsobené lineární kombinace. Užití charakterových tabulek: nulové a nenulové překryvové integrály. Symetricky řízená orbitální interakce. 7. Interakce mezi dvěma atomovými orbitaly: Molekuly A2 a AB. Interakce dvou identických a rozdílných AO. Obsazování hladin, celková energie. Překryv a symetrie. Interakce mezi čtyřmi AO. Dvojatomové molekuly A2 a AB: bázové funkce, pi a sigma MO, s-p interakce, interakční diagramy, elektronové konfigurace, vazebné délky a energie. 8. Interakce mezi dvěma fragmentovými orbitaly. Lineární a lomené molekuly AH2: pojem fragmentového orbitalu, elementy symetrie, MO, korelační diagram mezi lineární a lomenou geometrií, geometrie AH2 molekul. Aplikace na molekulu BeH2. 9. Molekuly AH3 a AH4. MO trigonálních molekul AH3. Orbitální korelační diagram pro trigonálně planární a pyramidální AH3. Planární nebo pyramidální geometrie? Tetraedrální molekuly AH4. Tvary AH4 systémů. 10. Pevné látky. Orbitaly a pásy v jednom rozměru. Blochovy funkce, k, pásové struktury. Průběh pásu. Hustota stavů. Distorze jednorozměrných systémů. Dvou a třírozměrné systémy. Vysokospinové a nízkospinové stavy.
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemná zkouška (vyžadující z větší části vlastní odpovědi, z menší části výběr z možností) a ústní zkouška (v rozsahu 2 bodů sylabu určených vyučující, 20 min příprava)
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie a elektronové struktury molekul
Přírodovědecká fakultapodzim 2012
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Ústav chemie – Chemická sekce – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Dodavatelské pracoviště: Ústav chemie – Chemická sekce – Přírodovědecká fakulta - Rozvrh
- St 12:00–14:50 C12/311
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 13 mateřských oborů, zobrazit
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní pojmy kvantové mechaniky.Pojem vlnové funkce, postulát o vlnové funkci. Obecná stacionární Schroedingerova rovnice. Pojmy operátor, vlastní funkce operátoru, vlastní hodnota příslušející operátoru a vlastní funkci. Hermitovský operátor: definice a vlastnosti. Operátor polohy, operátor hybnosti, operátor čtverce momentu hybnosti, operátor průmětu momentu hybnosti do osy z, operátor energie - tzv. Hamiltonián. Pojem dvojice komutujících operátorů, existence společné úplné množiny vlastních funkcí pro dvojici komutujících operátorů. 2. Atom vodíku.Hamiltonián pro atom vodíku s fixním jádrem resp. se zavedením redukované hmotnosti. Souřadnice pro sféricky symetrický potenciál. Vlastní stavy pro záporné a kladné hodnoty energie. Pojem degenerace, vlastní funkce. Radiální faktory, radiální distribuční funkce. Angulární faktory jako vlastní funkce operátorů momentu hybnosti. Komplexní a reálné angulární funkce. Způsoby znázorňování orbitalů, pojem orthogonality. 3. Atomy s více elektrony. Atomové jednotky. Hamiltonián pro atom He. Význam pojmu orbital. Celková VF ve vztahu k jednoelektronovým VF. Celková energie ve vztahu k jednoelektronovým energiím. Výměnná symetrie VF, elektronový spin, antisymetrie. Elektronová konfigurace Li, Pauliho princip výlučnosti. Slaterův determinant. Pojem Slaterovského orbitalu. Aufbau princip, Klechowského a Hundovo pravidlo. Vývoj atomových vlastností v periodickém systému. 4. Molekula H2+. Hamiltonián pro systém tří částic. Bornova-Oppenheimerova aproximace tvaru vlnové funkce. Metoda molekulových orbitalů (MO) jako lineární kominace atomových orbitalů (LCAO). Řešení (a) využitím symetrie a (b) variační metodou. Překryvový integrál, interakční integrál jako funkce mezijaderné vzdálenosti. Sekulární rovnice, výsledné energie a vlnové funkce. Grafické reprezentace MO, symetrické vlastnosti, pojem vazebného a protivazebného MO. Znázornění pomocí interakčního diagramu. 5. Jednoduchá Hückelova metoda. Aproximace nezávislých pi-elektronů. Hückelův determinant, veličiny alfa a beta. Vlastní hodnoty a funkce. Diagramy pro energiové hladiny. Nábojové hustoty, pi elektronové hustoty, HMO energie: vztah k experimentálním veličinám. Princip rozšířené Hückelovy metody, báze, překryvové a interakční integrály, parametr K, vlastní hodnoty a funkce. Elektronová struktura planárních uhlovodíků. 6. Symetrie molekul. Grupy symetrie molekul. Matice a jejich násobení. Maticová reprezentace grupy symetrie. Redukovatelná a neredukovatelná reprezentace. Označení neredukovatelných reprezentací. Symetricky přizpůsobené lineární kombinace. Užití charakterových tabulek: nulové a nenulové překryvové integrály. Symetricky řízená orbitální interakce. 7. Interakce mezi dvěma atomovými orbitaly: Molekuly A2 a AB. Interakce dvou identických a rozdílných AO. Obsazování hladin, celková energie. Překryv a symetrie. Interakce mezi čtyřmi AO. Dvojatomové molekuly A2 a AB: bázové funkce, pi a sigma MO, s-p interakce, interakční diagramy, elektronové konfigurace, vazebné délky a energie. 8. Interakce mezi dvěma fragmentovými orbitaly. Lineární a lomené molekuly AH2: pojem fragmentového orbitalu, elementy symetrie, MO, korelační diagram mezi lineární a lomenou geometrií, geometrie AH2 molekul. Aplikace na molekulu BeH2. 9. Molekuly AH3 a AH4. MO trigonálních molekul AH3. Orbitální korelační diagram pro trigonálně planární a pyramidální AH3. Planární nebo pyramidální geometrie? Tetraedrální molekuly AH4. Tvary AH4 systémů. 10. Pevné látky. Orbitaly a pásy v jednom rozměru. Blochovy funkce, k, pásové struktury. Průběh pásu. Hustota stavů. Distorze jednorozměrných systémů. Dvou a třírozměrné systémy. Vysokospinové a nízkospinové stavy.
- Literatura
- doporučená literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- JEAN, Yves a François VOLATRON. An introduction to molecular orbitals. Edited by Jeremy K. Burdett. New York: Oxford University Press, 1993, xiv, 337. ISBN 0195069188. info
- ALBRIGHT, Thomas A., Jeremy K. BURDETT a Myung-Hwan WHANGBO. Orbital interactions in chemistry. New York: Wiley, 1985, xv, 447. ISBN 0471873934. info
- Výukové metody
- Přednášky, cvičení, konzultace.
- Metody hodnocení
- Písemný test.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2011
- Rozsah
- 2/1/0. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Rozvrh
- Út 11:00–12:50 C04/211, Út 13:00–13:50 C04/211
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Chemoinformatika a bioinformatika (program PřF, B-BCH)
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní koncepty kvantové mechaniky. Historie a současnost kvantové chemie (QCH). 2. Atom vodíku. 3. Atomy s více elektrony. 4. Molekulový ion H2+ : Metoda MO-LCAO. 5. Molekuly s více elektrony: Jednoduchá a rozšířená Hueckelova metoda (HMO a EHT). 6. Kvalitativní popis elektronové struktury. Symetrie. Orbitální interakce. 7. Interakční a korelační diagramy malých molekul. 8. "Ab initio" kvantová chemie: Metoda Hartree-Fockova (HF). 9. Nadstavby HF metody: Konfigurační interakce (CI), Poruchová metoda (MP), Metoda spřažených klastrů (CC). 10. Metoda funckionálu hustoty (DFT). 11. Hierarchie ab initio metod,jejich vztah ke klasické a kvantové molekulové dynamice (MD). 12. Strategie aplikace QM metod na chemické problémy. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- PILAR, Frank L. Elementary quantum chemistry. 2nd ed. New York: McGraw-Hill Publishing Company, 1990, xvi, 599 s. ISBN 0-07-050093-2. info
- KOCH, Wolfram a Max C. HOLTHAUSEN. A chemist's guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH, 2001, xiii, 300. ISBN 3527304223. info
- Výukové metody
- Přednášky, diskuse v hodině, konzultace.
- Metody hodnocení
- ústní zkouška.
- Další komentáře
- Studijní materiály
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2010
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Rozvrh
- St 8:00–9:50 C12/311
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Chemoinformatika a bioinformatika (program PřF, B-BCH)
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní koncepty kvantové mechaniky. Historie a současnost kvantové chemie (QCH). 2. Atom vodíku. 3. Atomy s více elektrony. 4. Molekulový ion H2+ : Metoda MO-LCAO. 5. Molekuly s více elektrony: Jednoduchá a rozšířená Hueckelova metoda (HMO a EHT). 6. Kvalitativní popis elektronové struktury. Symetrie. Orbitální interakce. 7. Interakční a korelační diagramy malých molekul. 8. "Ab initio" kvantová chemie: Metoda Hartree-Fockova (HF). 9. Nadstavby HF metody: Konfigurační interakce (CI), Poruchová metoda (MP), Metoda spřažených klastrů (CC). 10. Metoda funckionálu hustoty (DFT). 11. Hierarchie ab initio metod,jejich vztah ke klasické a kvantové molekulové dynamice (MD). 12. Strategie aplikace QM metod na chemické problémy. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- PILAR, Frank L. Elementary quantum chemistry. 2nd ed. New York: McGraw-Hill Publishing Company, 1990, xvi, 599 s. ISBN 0-07-050093-2. info
- KOCH, Wolfram a Max C. HOLTHAUSEN. A chemist's guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH, 2001, xiii, 300. ISBN 3527304223. info
- Výukové metody
- Přednášky, diskuse v hodině, konzultace.
- Metody hodnocení
- ústní zkouška.
- Další komentáře
- Studijní materiály
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2009
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 C04/211
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Chemoinformatika a bioinformatika (program PřF, B-BCH)
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní koncepty kvantové mechaniky. Historie a současnost kvantové chemie (QCH). 2. Atom vodíku. 3. Atomy s více elektrony. 4. Molekulový ion H2+ : Metoda MO-LCAO. 5. Molekuly s více elektrony: Jednoduchá a rozšířená Hueckelova metoda (HMO a EHT). 6. Kvalitativní popis elektronové struktury. Symetrie. Orbitální interakce. 7. Interakční a korelační diagramy malých molekul. 8. "Ab initio" kvantová chemie: Metoda Hartree-Fockova (HF). 9. Nadstavby HF metody: Konfigurační interakce (CI), Poruchová metoda (MP), Metoda spřažených klastrů (CC). 10. Metoda funckionálu hustoty (DFT). 11. Hierarchie ab initio metod,jejich vztah ke klasické a kvantové molekulové dynamice (MD). 12. Strategie aplikace QM metod na chemické problémy. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- PILAR, Frank L. Elementary quantum chemistry. 2nd ed. New York: McGraw-Hill Publishing Company, 1990, xvi, 599 s. ISBN 0-07-050093-2. info
- KOCH, Wolfram a Max C. HOLTHAUSEN. A chemist's guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH, 2001, xiii, 300. ISBN 3527304223. info
- Výukové metody
- Přednášky, diskuse v hodině, konzultace.
- Metody hodnocení
- ústní zkouška.
- Další komentáře
- Studijní materiály
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2008
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Rozvrh
- Út 9:00–10:50 C04/211
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Chemoinformatika a bioinformatika (program PřF, B-BCH)
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní koncepty kvantové mechaniky. Historie a současnost kvantové chemie (QCH). 2. Atom vodíku. 3. Atomy s více elektrony. 4. Molekulový ion H2+ : Metoda MO-LCAO. 5. Molekuly s více elektrony: Jednoduchá a rozšířená Hueckelova metoda (HMO a EHT). 6. Kvalitativní popis elektronové struktury. Symetrie. Orbitální interakce. 7. Interakční a korelační diagramy malých molekul. 8. "Ab initio" kvantová chemie: Metoda Hartree-Fockova (HF). 9. Nadstavby HF metody: Konfigurační interakce (CI), Poruchová metoda (MP), Metoda spřažených klastrů (CC). 10. Metoda funckionálu hustoty (DFT). 11. Hierarchie ab initio metod,jejich vztah ke klasické a kvantové molekulové dynamice (MD). 12. Strategie aplikace QM metod na chemické problémy. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- PILAR, Frank L. Elementary quantum chemistry. 2nd ed. New York: McGraw-Hill Publishing Company, 1990, xvi, 599 s. ISBN 0-07-050093-2. info
- KOCH, Wolfram a Max C. HOLTHAUSEN. A chemist's guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH, 2001, xiii, 300. ISBN 3527304223. info
- Metody hodnocení
- Používané výukové metody: přednášky, diskuse v hodině, prezentace výsledků vlastního výzkumu a diskuse o nich, domácí úkoly, četba z vybrané literatury. Požadavky pro ukončení: Ústní zkouška.
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2011 - akreditace
Údaje z období podzim 2011 - akreditace se nezveřejňují
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Chemoinformatika a bioinformatika (program PřF, B-BCH)
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní koncepty kvantové mechaniky. Historie a současnost kvantové chemie (QCH). 2. Atom vodíku. 3. Atomy s více elektrony. 4. Molekulový ion H2+ : Metoda MO-LCAO. 5. Molekuly s více elektrony: Jednoduchá a rozšířená Hueckelova metoda (HMO a EHT). 6. Kvalitativní popis elektronové struktury. Symetrie. Orbitální interakce. 7. Interakční a korelační diagramy malých molekul. 8. "Ab initio" kvantová chemie: Metoda Hartree-Fockova (HF). 9. Nadstavby HF metody: Konfigurační interakce (CI), Poruchová metoda (MP), Metoda spřažených klastrů (CC). 10. Metoda funckionálu hustoty (DFT). 11. Hierarchie ab initio metod,jejich vztah ke klasické a kvantové molekulové dynamice (MD). 12. Strategie aplikace QM metod na chemické problémy. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- PILAR, Frank L. Elementary quantum chemistry. 2nd ed. New York: McGraw-Hill Publishing Company, 1990, xvi, 599 s. ISBN 0-07-050093-2. info
- KOCH, Wolfram a Max C. HOLTHAUSEN. A chemist's guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH, 2001, xiii, 300. ISBN 3527304223. info
- Výukové metody
- Přednášky, diskuse v hodině, konzultace.
- Metody hodnocení
- ústní zkouška.
- Nachází se v prerekvizitách jiných předmětů
C9920 Úvod do kvantové chemie
Přírodovědecká fakultapodzim 2010 - akreditace
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Markéta Munzarová, Dr. rer. nat. (přednášející)
- Garance
- doc. Mgr. Markéta Munzarová, Dr. rer. nat.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Chemoinformatika a bioinformatika (program PřF, B-BCH)
- Cíle předmětu
- Charakteristika předmětu: Jedná se o jednosemestrální uvedení do problematiky základů metod kvantové chemie a jejich aplikace na reprodukci, interpretaci a predikci experimentálních dat pro reálné chemické systémy. Kurz je zaměřen na poskytnutí teoretického základu potřebného pro studenty, kteří uvažují o využití metod kvantové chemie ve svých vlastních výzkumných úkolech nebo kteří tak již činí. Využití matematiky je omezeno na nezbytné minimum; základní kvantově-mechanické koncepty jsou zavedeny v rámci přednášky na konkrétních příkladech. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Osnova
- 1. Základní koncepty kvantové mechaniky. Historie a současnost kvantové chemie (QCH). 2. Atom vodíku. 3. Atomy s více elektrony. 4. Molekulový ion H2+ : Metoda MO-LCAO. 5. Molekuly s více elektrony: Jednoduchá a rozšířená Hueckelova metoda (HMO a EHT). 6. Kvalitativní popis elektronové struktury. Symetrie. Orbitální interakce. 7. Interakční a korelační diagramy malých molekul. 8. "Ab initio" kvantová chemie: Metoda Hartree-Fockova (HF). 9. Nadstavby HF metody: Konfigurační interakce (CI), Poruchová metoda (MP), Metoda spřažených klastrů (CC). 10. Metoda funckionálu hustoty (DFT). 11. Hierarchie ab initio metod,jejich vztah ke klasické a kvantové molekulové dynamice (MD). 12. Strategie aplikace QM metod na chemické problémy. Cíle předmětu: Pochopení základních konceptů kvantové mechaniky na jednoduchých reálných chemických systémech; osvojení principů výpočetních metod kvantové chemie; osvojení základních pravidel kvalitativní teorie MO umožňující orientaci ve vypočtených datech a propojení ke konceptům užívaných experimentálními chemiky.
- Literatura
- LOWE, John P. Quantum chemistry. 2nd ed. San Diego: Academic Press, 1993, xx, 711. ISBN 0124575552. info
- LEVINE, Ira N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall, 1999, x, 739. ISBN 0136855121. info
- PILAR, Frank L. Elementary quantum chemistry. 2nd ed. New York: McGraw-Hill Publishing Company, 1990, xvi, 599 s. ISBN 0-07-050093-2. info
- KOCH, Wolfram a Max C. HOLTHAUSEN. A chemist's guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH, 2001, xiii, 300. ISBN 3527304223. info
- Výukové metody
- Přednášky, diskuse v hodině, konzultace.
- Metody hodnocení
- ústní zkouška.
- Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (nejnovější)