F5151 Physical laboratory 4

Faculty of Science
Autumn 2024
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
In-person direct teaching
Teacher(s)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Tomáš Hoder, Ph.D. (seminar tutor)
Mgr. Martina Mrkvičková, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Mgr. Tomáš Rada (seminar tutor)
Guaranteed by
doc. Mgr. Pavel Dvořák, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Tue 8:00–10:50 Fpe,04005
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • (Vacuum physics)
  • Saffman-Taylor instability in a quasi-2D Hele-Shaw chamber
  • Luminscence of quantum dots
  • X-ray source spectrum. Compton scattering
  • Magnetometry
  • Quantum interference
  • Spectra of LED and their connection to the Planck constant
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2023
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Teacher(s)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Tomáš Hoder, Ph.D. (seminar tutor)
Mgr. Martina Mrkvičková, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Pavel Dvořák, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Tue 11:00–13:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • (Vacuum physics)
  • Saffman-Taylor instability in a quasi-2D Hele-Shaw chamber
  • Luminscence of quantum dots
  • X-ray source spectrum. Compton scattering
  • Magnetometry
  • Quantum interference
  • Spectra of LED and their connection to the Planck constant
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols or in the form of a presentation (the particular form will be announced ty the teacher of the particular problem).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2022
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Teacher(s)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
Mgr. Martina Mrkvičková, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Pavel Dvořák, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Tue 11:00–13:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Saffman-Taylor instability in a quasi-2D Hele-Shaw chamber
  • Luminscence of quantum dots
  • X-ray source spectrum. Compton scattering
  • Magnetometry
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols or in the form of a presentation (the particular form will be announced ty the teacher of the particular problem).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
autumn 2021
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Teacher(s)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Tomáš Hoder, Ph.D. (seminar tutor)
Mgr. Martina Mrkvičková, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Pavel Dvořák, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Wed 13:00–15:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Saffman-Taylor instability in a quasi-2D Hele-Shaw chamber
  • (Application of adaptive optics for imaging improvement)
  • (Light distribution near focus of a lens)
  • Luminscence of quantum dots
  • (Wave-particle nature of light)
  • X-ray source spectrum. Compton scattering
  • Magnetometry
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols or in the form of a presentation (the particular form will be announced ty the teacher of the particular problem).
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2020
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Teacher(s)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Tomáš Hoder, Ph.D. (seminar tutor)
Mgr. Martina Mrkvičková, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Pavel Dvořák, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Tue 15:00–17:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Saffman-Taylor instability in a quasi-2D Hele-Shaw chamber
  • (Application of adaptive optics for imaging improvement)
  • (Light distribution near focus of a lens)
  • Luminscence of quantum dots
  • (Wave-particle nature of light)
  • X-ray source spectrum. Compton scattering
  • Magnetometry
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2019
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Teacher(s)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Mgr. Jan Voráč, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Pavel Dvořák, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Tue 16:00–18:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • (Saffman-Taylor instability in a quasi-2D Hele-Shaw chamber)
  • (Application of adaptive optics for imaging improvement)
  • (Light distribution near focus of a lens)
  • Luminscence of quantum dots
  • (Wave-particle nature of light)
  • X-ray source spectrum. Compton scattering
  • Magnetometry
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2018
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Teacher(s)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Tomáš Hoder, Ph.D. (seminar tutor)
Mgr. Petr Klenovský, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Mgr. Jan Voráč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Josef Humlíček, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science (50,00 %), Department of Plasma Physics and Technology – Physics Section – Faculty of Science (50,00 %)
Timetable
Mon 17. 9. to Fri 14. 12. Tue 14:00–16:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2 || F4210 Physical laboratory 3
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • (Coherence length)
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Saffman-Taylor instability in a quazi-2D Hele-Shaw chamber
  • (Application of adaptive optics for imaging improvement)
  • Light distribution near focus of a lens
  • Luminscence of quantum dots
  • Wave-particle nature of light
  • X-ray source spectrum. Compton scattering
  • Magnetometry
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
autumn 2017
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: z (credit). Other types of completion: graded credit.
Teacher(s)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
Mgr. Jan Dvořák, Ph.D. (seminar tutor)
Mgr. Petr Klenovský, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Mgr. Jan Voráč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Fri 10:00–12:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Learning outcomes
Student gets experience with experimental physical work (experimental plan, measurement, data analysis, presentation).
Syllabus
  • The problem list:
  • (Coherence length)
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • (Application of adaptive optics for imaging improvement)
  • Light distribution near focus of a lens
  • Luminscence of quantum dots
  • Wave-particle nature of light
  • X-ray source spectrum. Compton scattering
  • Magnetometry
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2016
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: z (credit). Other types of completion: graded credit.
Teacher(s)
Mgr. Dušan Hemzal, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Jaroslav Hnilica, Ph.D. (seminar tutor)
Mgr. Petr Klenovský, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Mgr. Jan Voráč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Josef Humlíček, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Tue 14:00–16:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Application of adaptive optics for imaging improvement
  • Light distribution near focus of a lens
  • Luminscence of quantum dots
  • Wave-particle nature of light
  • X-ray source spectrum. Compton scattering
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2015, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2015
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: z (credit). Other types of completion: graded credit.
Teacher(s)
Mgr. Dušan Hemzal, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
Mgr. Petr Klenovský, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Mgr. Jan Voráč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science
Timetable
Tue 11:00–13:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Application of adaptive optics for imaging improvement
  • Light distribution near focus of a lens
  • Luminscence of quantum dots
  • Wave-particle nature of light
  • X-ray source spectrum. Compton scattering
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2014, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2014
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: z (credit). Other types of completion: graded credit.
Teacher(s)
Mgr. Dušan Hemzal, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Adam Dubroka, Ph.D. (seminar tutor)
Mgr. Petr Klenovský, Ph.D. (seminar tutor)
Mgr. Filip Münz, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Jüri Raud, PhD. (seminar tutor)
Mgr. Jan Voráč, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Josef Humlíček, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Timetable
Tue 11:00–13:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Vacuum physics
  • Measurement of human cornea curvature
  • Light distribution near focus of a lens
  • Luminscence of quantum dots
  • Wave-particle nature of light
  • X-ray source spectrum. Compton scattering
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2013, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.

F5151 Physical laboratory 4

Faculty of Science
Autumn 2013
Extent and Intensity
0/3/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: z (credit). Other types of completion: graded credit.
Teacher(s)
Mgr. Dušan Hemzal, Ph.D. (seminar tutor)
doc. Mgr. Pavel Dvořák, Ph.D. (seminar tutor)
doc. Mgr. Ondřej Caha, Ph.D. (seminar tutor)
doc. Mgr. Adam Dubroka, Ph.D. (seminar tutor)
Raavo Josepson, PhD. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Pavel Dvořák, Ph.D.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science
Timetable
Wed 14:00–16:50 Fp3,01001
Prerequisites (in Czech)
F3240 Physical laboratory 2
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After successfully passing the course, the students should be able to:
- apply the physical knowledge to analyze a presented physical problem in the physical lab
- to propose and assemble an experimental setup for a successful measurement of the problem
- to distinguish the information needed to pass into the measurement protocol in view of debating the results of the measurement
Syllabus
  • The problem list:
  • Coherence length
  • Planck law, temperature measurement
  • Detection of fluorescence and evaluation of tracer-breakdown curves
  • Photoeffect, measurement of Planck constant
  • Chaotic system
  • Coaxial cables
  • Falling and rotation of flat objects
  • Measurement of human cornea curvature
  • Aberrations of simple lenses
  • Luminscence of quantum dots
  • X-ray source spectrum. Compton scattering
Literature
Teaching methods
team work in the physical lab with independency of the students in both the problem choice and its solution
Assessment methods
Every student must pass in a pair three problems (in 3+1 weeks each) of choice (subject to capacity limitations). The credits are awarded after successful presentation of the measurements and their results in extent of commented measurement protocols.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (recent)