F6030 Quantum mechanics
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 8:00–8:50 F3,03015, Mon 9:00–9:50 Fs2 6/4003, Mon 14:00–15:50 F4,03017, Thu 8:00–9:50 F3,03015
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2010
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 13:00–13:50 Fs1 6/1017, Mon 14:00–14:50 Fs2 6/4003, Tue 11:00–12:50 F4,03017, Thu 8:00–9:50 F3,03015
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 17:00–18:50 Fs2 6/4003, Tue 14:00–15:50 Fs1 6/1017
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 8:00–9:50 F2 6/2012, Tue 10:00–11:50 Fs2 6/4003, Thu 10:00–11:50 Fs2 6/4003
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- At the end of the course, students should be able to understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods
- Lecture with a seminar. Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Tue 13:00–14:50 Fs1 6/1017, Wed 11:00–12:50 Fs1 6/1017, Thu 13:00–14:50 F4,03017
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2006
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 14:00–15:50 F3,03015, Tue 13:00–14:50 F4,03017, Tue 16:00–17:50 F4,03017
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Jolana Kološová (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Mon 11:00–12:50 F4,03017, Tue 11:00–12:50 F4,03017, Thu 10:00–11:50 F3,03015
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Lenka Czudková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Timetable
- Tue 12:00–13:50 F1 6/1014, Thu 10:00–11:50 F1 6/1014, Thu 12:00–13:50 03039
- Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Lenka Czudková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2002
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Lenka Czudková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4050 Úvod do fyziky mikrosvěta || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2001
- Extent and Intensity
- 4/2/0. 7 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Lenka Czudková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.
- Syllabus
- Electromagnetic radiation as a system of photons. Historical development of views on nature of light, blackbody radiation, the quantum hypothesis, photoelectric emission, scattering of radiation by free electrons, polarization of light from the point of view of the photon hypothesis. The structure of the atom. Historical development of views on structure of matter, early models of the atom, Rutherford's scattering experiment, the planetary model of the atom. Electronic structure of atoms I. The planetary model of the atom from the classical point of view, problem of its stability, the Bohr model for hydrogen atom, the Sommerfeld's generalization of the Bohr model, Franck-Hertz's experiment, optical spectra of atoms, X-ray spectra. The ware particle dualism and its physical interpretation. The de Broglie's hypothesis, Davisson-Germer's and Thomson's experiments, Young's double slit experiment with classical particles, waves and microobjects. Fundamental of quantum mechanics. The wave function, superposition principle and its physical meaning, wave packet, the uncertainty relation and its physical consequences, measurement in microworld, the relation of classical and quantum mechanics. The Schroedinger equation. The Schroedinger equation as the equation of motion of quantum mechanics, the stationary Schroedinger equation and its solution for some simple potential models, quantum effects. Approximation of real situations by means of simple potential models. Thermoemission, autoemission, contact potential, p-n junction, interaction of two microobjects, nuclear transitions, radioactivity, the band model of solids, electrical conductivity. Electronic structure of atoms II. The quantum description of the hydrogen atom, electronic configurations of many electron atoms, the Mendeleev periodical system. Nuclear structure. Nuclear forces, classification of nuclei, radioactivity, nuclear reactions, nuclear fusion and fission. Text ze sylabu 1998 The postulates and the mathematical tools of quantum mechanics. Wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle. The Schrödinger equation. The time development of the state of a microobject, general Schroedinger equation, physical implications of Schroedinger equation, causality in quantum mechanics, the stationary Schroedinger equation, the properties of stationary states. Simple applications. Square potential models (thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids), harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem. Approximation methods. Discontinuous potentials, WKB approximation, estimations of ground-state parameters of bound systems, perturbation and variation methods. The angular momentum. Commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. Central fields. Quantization of energy and angular momentum, radial and angular probability density. The hydrogen atom, energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom. Quantum mechanics of many body systems: Indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond. Quantum mechanics at university and at school. A survey of the most frequent elementary treatments and their critical analysis.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceSpring 2001
- Extent and Intensity
- 4/2/0. 7 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Lenka Czudková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Syllabus
- The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school. Text ze sylabu 1995: Electromagnetic radiation as a system of photons. Historical development of views on nature of light, blackbody radiation, the quantum hypothesis, photoelectric emission, scattering of radiation by free electrons, polarization of light from the point of view of the photon hypothesis. The structure of the atom. Historical development of views on structure of matter, early models of the atom, Rutherford's scattering experiment, the planetary model of the atom. Electronic structure of atoms I. The planetary model of the atom from the classical point of view, problem of its stability, the Bohr model for hydrogen atom, the Sommerfeld's generalization of the Bohr model, Franck-Hertz's experiment, optical spectra of atoms, X-ray spectra. The ware particle dualism and its physical interpretation. The de Broglie's hypothesis, Davisson-Germer's and Thomson's experiments, Young's double slit experiment with classical particles, waves and microobjects. Fundamental of quantum mechanics. The wave function, superposition principle and its physical meaning, wave packet, the uncertainty relation and its physical consequences, measurement in microworld, the relation of classical and quantum mechanics. The Schroedinger equation. The Schroedinger equation as the equation of motion of quantum mechanics, the stationary Schroedinger equation and its solution for some simple potential models, quantum effects. Approximation of real situations by means of simple potential models. Thermoemission, autoemission, contact potential, p-n junction, interaction of two microobjects, nuclear transitions, radioactivity, the band model of solids, electrical conductivity. Electronic structure of atoms II. The quantum description of the hydrogen atom, electronic configurations of many electron atoms, the Mendeleev periodical system. Nuclear structure. Nuclear forces, classification of nuclei, radioactivity, nuclear reactions, nuclear fusion and fission. Text ze sylabu 1998 The postulates and the mathematical tools of quantum mechanics. Wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle. The Schrödinger equation. The time development of the state of a microobject, general Schroedinger equation, physical implications of Schroedinger equation, causality in quantum mechanics, the stationary Schroedinger equation, the properties of stationary states. Simple applications. Square potential models (thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids), harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem. Approximation methods. Discontinuous potentials, WKB approximation, estimations of ground-state parameters of bound systems, perturbation and variation methods. The angular momentum. Commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. Central fields. Quantization of energy and angular momentum, radial and angular probability density. The hydrogen atom, energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom. Quantum mechanics of many body systems: Indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond. Quantum mechanics at university and at school. A survey of the most frequent elementary treatments and their critical analysis.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceSpring 2000
- Extent and Intensity
- 4/2/0. 7 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
Mgr. Lenka Czudková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4070 Theoretical mechanics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Syllabus
- The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school. Text ze sylabu 1995: Electromagnetic radiation as a system of photons. Historical development of views on nature of light, blackbody radiation, the quantum hypothesis, photoelectric emission, scattering of radiation by free electrons, polarization of light from the point of view of the photon hypothesis. The structure of the atom. Historical development of views on structure of matter, early models of the atom, Rutherford's scattering experiment, the planetary model of the atom. Electronic structure of atoms I. The planetary model of the atom from the classical point of view, problem of its stability, the Bohr model for hydrogen atom, the Sommerfeld's generalization of the Bohr model, Franck-Hertz's experiment, optical spectra of atoms, X-ray spectra. The ware particle dualism and its physical interpretation. The de Broglie's hypothesis, Davisson-Germer's and Thomson's experiments, Young's double slit experiment with classical particles, waves and microobjects. Fundamental of quantum mechanics. The wave function, superposition principle and its physical meaning, wave packet, the uncertainty relation and its physical consequences, measurement in microworld, the relation of classical and quantum mechanics. The Schroedinger equation. The Schroedinger equation as the equation of motion of quantum mechanics, the stationary Schroedinger equation and its solution for some simple potential models, quantum effects. Approximation of real situations by means of simple potential models. Thermoemission, autoemission, contact potential, p-n junction, interaction of two microobjects, nuclear transitions, radioactivity, the band model of solids, electrical conductivity. Electronic structure of atoms II. The quantum description of the hydrogen atom, electronic configurations of many electron atoms, the Mendeleev periodical system. Nuclear structure. Nuclear forces, classification of nuclei, radioactivity, nuclear reactions, nuclear fusion and fission. Text ze sylabu 1998 The postulates and the mathematical tools of quantum mechanics. Wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle. The Schrödinger equation. The time development of the state of a microobject, general Schroedinger equation, physical implications of Schroedinger equation, causality in quantum mechanics, the stationary Schroedinger equation, the properties of stationary states. Simple applications. Square potential models (thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids), harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem. Approximation methods. Discontinuous potentials, WKB approximation, estimations of ground-state parameters of bound systems, perturbation and variation methods. The angular momentum. Commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. Central fields. Quantization of energy and angular momentum, radial and angular probability density. The hydrogen atom, energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom. Quantum mechanics of many body systems: Indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond. Quantum mechanics at university and at school. A survey of the most frequent elementary treatments and their critical analysis.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2024
The course is not taught in Autumn 2024
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2023
The course is not taught in Autumn 2023
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2022
The course is not taught in Autumn 2022
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of Scienceautumn 2021
The course is not taught in autumn 2021
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2020
The course is not taught in Autumn 2020
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2019
The course is not taught in Autumn 2019
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2018
The course is not taught in Autumn 2018
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of Scienceautumn 2017
The course is not taught in autumn 2017
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2016
The course is not taught in Autumn 2016
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2015
The course is not taught in Autumn 2015
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2014
The course is not taught in Autumn 2014
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2013
The course is not taught in Autumn 2013
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2012
The course is not taught in Autumn 2012
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2010 - only for the accreditation
- Extent and Intensity
- 3/2/0. 5 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics || F4100 Introduction to Microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- At the end of the course, students should understand and be able to explain and to use: The postulates and mathematical tools of quantum mechanics. Schrödinger equation and its simple applications. Approximation methods of quantum mechanics. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Interconnection between quantum mechanics at university and at school.
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle).
- 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states).
- 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem).
- 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods).
- 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta.
- 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization.
- 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom).
- 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond).
- 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- SKÁLA, Lubomír. Úvod do kvantové mechaniky. Vyd. 1. Praha: Academia, 2005, 281 s. ISBN 8020013164. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Teaching methods
- Lecture with a seminar; two written tests in the course of the term.
- Assessment methods
- Examination consists of two parts: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
F6030 Quantum mechanics
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 4/2/0. 6 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Aleš Lacina, CSc. (lecturer)
RNDr. Eva Kutálková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. RNDr. Aleš Lacina, CSc. - Prerequisites (in Czech)
- F4050 Introduction to Microphysics || F4060 Introduction to microphysics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Upper Secondary School Teacher Training in Physics (programme PřF, M-SS)
- Course objectives
- [The postulates and mathematical tools of quantum mechanics. Schrödinger equation. Simple applications - square potentials. Approximation methods of quantum mechanics. The angular momentum. Central fields. The hydrogen atom. Spin. Fundamentals of quantum mechanics of many body systems. Basic concepts of chemical bond. Quantum mechanics at university and at school.]
- Syllabus
- 1. The postulates and the mathematical tools of quantum mechanics (wave function and state vector, the superposition principle, hermitian operators, expansion in eigenfunctions, representations, physical quantities in quantum mechanics, measurement in microworld, the expectation values of physical quantities, uncertainty principle). 2. The Schrödinger equation (the time development of the state of a microobject, general Schrödinger equation, physical implications of Schrödinger equation, causality in quantum mechanics, the stationary Schrödinger equation, the properties of stationary states). 3. Simple applications of quantum mechanics (square potential models - thermoemission, autoemission, contact potential, radioactivity, transitions of nuclei, molecules and their interactions, the band model of solids, harmonic oscillator, the relation between energy degeneracy and the symmetry of the problem). 4. Approximation methods (discontinuous potentials, WKB approximation, estimations of ground-state characteristics of bound systems, perturbation and variation methods). 5. The angular momentum (commutation rules and eigenvalues, quantization and degeneracy, geometrical interpretation, addition of angular momenta. 6. Central fields (scatterring and bound states, quantization of energy and angular momentum, radial and angular probability density). 7. The hydrogen atom (energy spectrum, geometrical visualisation of the charge density in the hydrogen atom, hybridization. 8. Spin. (Uhlenbeck and Goudsmit's hypothesis, Stern-Gerlach's experiment, the Pauli equation, spin effects in the hydrogen atom). 9. Quantum mechanics of many body systems (indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle, the one-particle approximation, the self-consistent field method, many electrons atoms, the Mendeleev periodic system, chemical bond). 10. Quantum mechanics at university and at school (a survey of the most frequent elementary treatments and their critical analysis).
- Literature
- PIŠÚT, Ján, Ladislav GOMOLČÁK and Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- Wichman, Eyvind H. Quantum Physics (Berkeley Physics Course, Vol.IV). New York: McGraw-Hill Book Company. (Ruský překlad: Kvantovaja fizika. Moskva: Nauka, 1974.)
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1981, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- LACINA, Aleš. Cvičení z kvantové mechaniky pro posluchače učitelství fyziky. Vyd. 1. Brno: Rektorát UJEP, 1989, 103 s. ISBN 8021000678. URL info
- Assessment methods (in Czech)
- Výuka: klasická přednáška a klasické cvičení. Zkouška: písemná a ústní
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
- Enrolment Statistics (recent)