M0160 Optimization
Faculty of ScienceSpring 2025
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Petr Zemánek, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- After this course the studnets get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- required literature
- ZEMÁNEK, Petr. Optimalizace aneb když méně je více. 2021. URL info
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Lectures and exercises.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
The conditions (especially regarding the form of the tests and exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M0160 Optimization
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Petr Zemánek, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 19. 2. to Sun 26. 5. Tue 10:00–11:50 M1,01017
- Timetable of Seminar Groups:
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- After this course the studnets get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- required literature
- ZEMÁNEK, Petr. Optimalizace aneb když méně je více. 2021. URL info
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Lectures and exercises.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
The conditions (especially regarding the form of the tests and exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M0160 Optimization
Faculty of ScienceSpring 2023
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Petr Zemánek, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 12:00–13:50 M1,01017
- Timetable of Seminar Groups:
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- After this course the studnets get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- required literature
- ZEMÁNEK, Petr. Optimalizace aneb když méně je více. 2021. URL info
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Lectures and exercises.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
The conditions (especially regarding the form of the tests and exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M0160 Optimization
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Petr Zemánek, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 10:00–11:50 M2,01021
- Timetable of Seminar Groups:
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- After this course the studnets get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- required literature
- ZEMÁNEK, Petr. Optimalizace aneb když méně je více. 2021. URL info
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Lectures and exercises.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
The conditions (especially regarding the form of the tests and exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M0160 Optimization
Faculty of ScienceSpring 2021
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Petr Zemánek, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 1. 3. to Fri 14. 5. Fri 10:00–11:50 M1,01017
- Timetable of Seminar Groups:
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- After this course the studnets get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- required literature
- ZEMÁNEK, Petr. Optimalizace aneb když méně je více. 2021. URL info
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Lectures and exercises.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
The conditions (especially regarding the form of the tests and exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M0160 Optimization
Faculty of ScienceSpring 2020
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Petr Zemánek, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 14:00–15:50 M4,01024
- Timetable of Seminar Groups:
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- After this course the studnets get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- not specified
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Lectures and exercises.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M0160 Optimization Theory
Faculty of ScienceSpring 2019
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 2. to Fri 17. 5. Thu 10:00–11:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- The course of M5170 Mathematical Programming is suitable for the part devoted to the linear and quadratic programming.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course M5170 Mathematical Programming. Students will get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- not specified
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Theoretical lecture (2 hours) and seminar (2 hours).
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of Sciencespring 2018
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- The course of M5170 Mathematical Programming is suitable for the part devoted to the linear and quadratic programming.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course M5170 Mathematical Programming. Students will get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- not specified
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Theoretical lecture (2 hours) and seminar (2 hours).
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2017
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 20. 2. to Mon 22. 5. Thu 12:00–13:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- The course of M5170 Mathematical Programming is suitable for the part devoted to the linear and quadratic programming. Generally, knowledges from the courses of mathematical analysis.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course M5170 Mathematical Programming and presents some optimization problems in more details. At the of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- not specified
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Theoretical lecture (2 hours) and seminar (1 hour).
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2016
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 14:00–15:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- The course of M5170 Mathematical Programming is suitable for the part devoted to the linear and quadratic programming. Generally, knowledges from the courses of mathematical analysis.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course M5170 Mathematical Programming and presents some optimization problems in more details. At the of this course the students will be able to solve problems of the linear, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- not specified
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Theoretical lecture (2 hours) and seminar (1 hour).
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2015
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 11:00–12:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- The course of M5170 Mathematical Programming is suitable for the part devoted to the linear and quadratic programming. Generally, knowledges from the course of Mathematical Analysis I-III are suitable.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Finance Mathematics (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course M5170 Mathematical Programming and presents optimization methods which are not treated in that course. At the of this course the students will be able to solve problems of the linear, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Theoretical lecture with illustrative examples.
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2014
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
doc. Mgr. Petr Zemánek, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 15:00–16:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Finance Mathematics (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Teaching methods
- Theoretical lecture
- Assessment methods
- The course is finished by an oral exam. The student usually gets two questions. The knowledge of basic concepts of both two questions is needed to pass. What does it mean ``knowledge of the basic cenceps'' depends of a particular quastion which is a student given.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2013
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 8:00–9:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Finance Mathematics (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Teaching methods
- Theoretical lecture
- Assessment methods
- The course is finished by an oral exam. The student usually gets two questions. The knowledge of basic concepts of both two questions is needed to pass. What does it mean ``knowledge of the basic cenceps'' depends of a particular quastion which is a student given.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2012
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 16:00–17:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Finance Mathematics (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Teaching methods
- Theoretical lecture
- Assessment methods
- The course is finished by an oral exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M0160 Optimization Theory
Faculty of ScienceSpring 2011
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 14:00–15:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations: historical motivation, Euler-Lagrange equation and the first variation, second variation. Elements of optimal control theory, Pontryagin principle.
- Literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- LEWIS, Frank. Optimal Control. New York: John Wiley & Sons, 1986, 362 pp. A Wiley-Interscience Publication. ISBN 0-471-81240-4. info
- Teaching methods
- Theoretical lecture and excersise with illustrating examples
- Assessment methods
- The course is finished by an oral exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2010
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Zdeněk Pospíšil, Dr. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 18:00–19:50 M5,01013
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Teaching methods
- Theoretical lecture
- Assessment methods
- The course is finished by an oral exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2009
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 12:00–13:50 M2,01021
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods
- The course is finished by an oral exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2008
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 10:00–11:50 UP1
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2007
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ondřej Došlý, DrSc. - Timetable
- Mon 8:00–9:50 UP1
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2006
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ondřej Došlý, DrSc. - Timetable
- Tue 15:00–16:50 UP2
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2005
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ondřej Došlý, DrSc. - Timetable
- Thu 10:00–11:50 U1
- Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M0160 Optimalization
Faculty of ScienceSpring 2004
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ondřej Došlý, DrSc. - Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
M0160 Optimalizition
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ondřej Došlý, DrSc. - Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week.
M0160 Optimization Theory
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Teaching methods
- Theoretical lecture
- Assessment methods
- The course is finished by an oral exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
M0160 Theory of Optimalization
Faculty of ScienceSpring 2011 - only for the accreditation
- Extent and Intensity
- 2/1. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Finance Mathematics (programme PřF, N-AM)
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Teaching methods
- Theoretical lecture
- Assessment methods
- The course is finished by an oral exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
M0160 Optimalization
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ondřej Došlý, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ondřej Došlý, DrSc. - Prerequisites
- The course of Mathematical Programming is supposed for the part devoted to quadratic programming, generally knowledges from the course of Mathematical Analysis I-III are supposed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The course is a free continuation of the course Mathematical Programming (M5170) and presents optimization methods which are not treated in that course.
- Syllabus
- I. Quadratic programming in economic decision, methods of quadratic programming (continuation of the course Mathematical Programming M5171). II. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models - functional equation of dynamic programming. III. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- Assessment methods (in Czech)
- Přednáška zakončná kolokviem spočívajícím ve vypracováním kolokviální práce (5-10 str.).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (recent)