M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2024
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
In-person direct teaching - Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
doc. RNDr. Martin Čadek, CSc. (seminar tutor) - Guaranteed by
- doc. Lukáš Vokřínek, PhD.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 14:00–15:50 M1,01017
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of bilinear and quadratic forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics:
- polyhedra and optimalization of linear functions on polyhedra,
- multilinear algebra and tensors,
- integer and polynomial matrices and their connection with Jordan canonical form.
These topics find applications in differential geometry and linear differential equations. - Learning outcomes
- At the end of this course students will be able to:
- understand the structure of polyhedra and solve the linear programming problem via the simplex method;
- compute with tensors both in coordinates and without them;
- find the Smith normal form of a matrix and interpret it, in particular, derive from it the Jordan canonical form - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Polyhedral cones and polyhedra: various definitions and their comparison, Farkas lemma, faces of polyhedra, linear programming problem, duality in linear programming, simplex method
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Integer and polynomial matrices: Smith normal form, connection with presentations of commutative groups, classification of finitely generated commutative groups, connection with characteristic and minimal polynomial and with Jordan canonical form.
- Literature
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two tests at the tutorials. It is required to obtain in total more than half of the points from these tests. In addition, the maximum allowed number of absences at the tutorials is set to 3 (in the case of the distance education, the presence will be supplemented by working out homeworks).
The final exam consists of a written and an oral part. It is required to obtain at least 50% of points from the written part. For the colloquium type completion of the course, students will only sit the written part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~koren
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2023
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
doc. Lukáš Vokřínek, PhD. (lecturer)
Joanna Ko, M.Sc. (seminar tutor) - Guaranteed by
- doc. Lukáš Vokřínek, PhD.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of bilinear and quadratic forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics:
- polyhedra and optimalization of linear functions on polyhedra,
- multilinear algebra and tensors,
- integer and polynomial matrices and their connection with Jordan canonical form.
These topics find applications in differential geometry and linear differential equations. - Learning outcomes
- At the end of this course students will be able to:
- understand the structure of polyhedra and solve the linear programming problem via the simplex method;
- compute with tensors both in coordinates and without them;
- find the Smith normal form of a matrix and interpret it, in particular, derive from it the Jordan canonical form - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Polyhedral cones and polyhedra: various definitions and their comparison, Farkas lemma, faces of polyhedra, linear programming problem, duality in linear programming, simplex method
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Integer and polynomial matrices: Smith normal form, connection with presentations of commutative groups, classification of finitely generated commutative groups, connection with characteristic and minimal polynomial and with Jordan canonical form.
- Literature
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two tests at the tutorials. It is required to obtain in total more than half of the points from these tests. In addition, the maximum allowed number of absences at the tutorials is set to 3 (in the case of the distance education, the presence will be supplemented by working out homeworks).
The final exam consists of a written and an oral part. It is required to obtain at least 50% of points from the written part. For the colloquium type completion of the course, students will only sit the written part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~koren
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2022
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
Joanna Ko, M.Sc. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 14:00–15:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of bilinear and quadratic forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics:
- polyhedra and optimalization of linear functions on polyhedra,
- multilinear algebra and tensors,
- integer and polynomial matrices and their connection with Jordan canonical form.
These topics find applications in differential geometry and linear differential equations. - Learning outcomes
- At the end of this course students will be able to:
- understand the structure of polyhedra and solve the linear programming problem via the simplex method;
- compute with tensors both in coordinates and without them;
- find the Smith normal form of a matrix and interpret it, in particular, derive from it the Jordan canonical form - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Polyhedral cones and polyhedra: various definitions and their comparison, Farkas lemma, faces of polyhedra, linear programming problem, duality in linear programming, simplex method
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Integer and polynomial matrices: Smith normal form, connection with presentations of commutative groups, classification of finitely generated commutative groups, connection with characteristic and minimal polynomial and with Jordan canonical form.
- Literature
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two tests at the tutorials. It is required to obtain in total more than half of the points from these tests. In addition, the maximum allowed number of absences at the tutorials is set to 3 (in the case of the distance education, the presence will be supplemented by working out homeworks).
The final exam consists of a written and an oral part. It is required to obtain at least 50% of points from the written part. For the colloquium type completion of the course, students will only sit the written part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~koren
M3130 Linear Algebra and Geometry III
Faculty of Scienceautumn 2021
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 12:00–13:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of bilinear and quadratic forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics:
- polyhedra and optimalization of linear functions on polyhedra,
- multilinear algebra and tensors,
- integer and polynomial matrices and their connection with Jordan canonical form.
These topics find applications in differential geometry and linear differential equations. - Learning outcomes
- At the end of this course students will be able to:
- understand the structure of polyhedra and solve the linear programming problem via the simplex method;
- compute with tensors both in coordinates and without them;
- find the Smith normal form of a matrix and interpret it, in particular, derive from it the Jordan canonical form - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Polyhedral cones and polyhedra: various definitions and their comparison, Farkas lemma, faces of polyhedra, linear programming problem, duality in linear programming, simplex method
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Integer and polynomial matrices: Smith normal form, connection with presentations of commutative groups, classification of finitely generated commutative groups, connection with characteristic and minimal polynomial and with Jordan canonical form.
- Literature
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two tests at the tutorials. It is required to obtain in total more than half of the points from these tests. In addition, the maximum allowed number of absences at the tutorials is set to 3 (in the case of the distance education, the presence will be supplemented by working out homeworks).
The final exam consists of a written and an oral part. It is required to obtain at least 50% of points from the written part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~koren
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2020
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of bilinear and quadratic forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics:
- polyhedra and optimalization of linear functions on polyhedra,
- multilinear algebra and tensors,
- integer and polynomial matrices and their connection with Jordan canonical form.
These topics find applications in differential geometry and linear differential equations. - Learning outcomes
- At the end of this course students will be able to:
- understand the structure of polyhedra and solve the linear programming problem via the simplex method;
- compute with tensors both in coordinates and without them;
- find the Smith normal form of a matrix and interpret it, in particular, derive from it the Jordan canonical form - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Polyhedral cones and polyhedra: various definitions and their comparison, Farkas lemma, faces of polyhedra, linear programming problem, duality in linear programming, simplex method
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Integer and polynomial matrices: Smith normal form, connection with presentations of commutative groups, classification of finitely generated commutative groups, connection with characteristic and minimal polynomial and with Jordan canonical form.
- Literature
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. In addition to having max 3 absences at the tutorials (the presence will be replaced by handing in homeworks in the case of the distance tutorials), it is required to obtain in total more than half of the points from these tests.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~koren
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 10:00–11:50 M1,01017
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of bilinear and quadratic forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics:
- quadrics and their classification,
- multilinear algebra and tensors,
- integer and polynomial matrices and their connection with Jordan canonical form.
These topics find applications in differential geometry and linear differential equations. - Learning outcomes
- At the end of this course students will be able to:
- understand the connection between bilinear forms and the geometry of quadrics;
- compute invariants of quadrics and derive their geometric properties;
- compute with tensors both in coordinates and without them;
- find the Smith normal form of a matrix and interpret it, in particular, derive from it the Jordan canonical form - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Integer and polynomial matrices: Smith normal form, connection with presentations of commutative groups, classification of finitely generated commutative groups, connection with characteristic and minimal polynomial and with Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. In addition to having an allowed number of absences at the tutorials, it is required to obtain in total more than half of the points from these tests.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2018
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
doc. RNDr. Martin Čadek, CSc. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 17. 9. to Fri 14. 12. Mon 10:00–11:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Mon 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 19. 9. to Sun 18. 12. Mon 14:00–15:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 13:00–14:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Statistics and Data Analysis (programme PřF, B-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 12:00–13:50 M1,01017
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2013
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 12:00–13:50 M2,01021
- Timetable of Seminar Groups:
M3130/02: Wed 12:00–13:50 M3,01023, L. Vokřínek - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 12:00–13:50 M1,01017
- Timetable of Seminar Groups:
M3130/02: Wed 14:00–15:50 M6,01011, L. Vokřínek - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 12:00–13:50 M1,01017
- Timetable of Seminar Groups:
M3130/02: Wed 16:00–17:50 M5,01013, L. Vokřínek - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, projective closure, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Selected applications: spectral decomposition, Moore-Penrose pseudoinverse, Markov chains
- Multilinear algebra: dual space, tensor product, exterior and symmetric products, tensor coordinates, functor Hom and its relation to the tensor product.
- Integer matrices: equivalence, Smith normal form, classification of finitely generated commutative groups
- Polynomial matrices: equivalence, Smith normal form, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- LANG, Serge. Linear Algebra. Third Edition. New York: Springer-Verlag, 1987, 296 pp. ISBN 0-387-96412-6. info
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2010
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 12:00–13:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 12:00–13:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 15:00–16:50 M1,01017
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations. At the end of this course, students should be able to understand connections between bilinear forms and the geometry of quadrics, to know basics of multilinear algebra and to compute the Jordan canonical form of a matrix via characteristic matrix.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods
- Form: lectures and exercises. Exam: written and oral Requirements: to know basic theory from the lectures, to obtain internal credit from exarcises.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 12:00–13:50 N41
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2006
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
doc. Mgr. Jaroslav Hrdina, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable
- Mon 8:00–9:50 N21
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
doc. Mgr. Jaroslav Hrdina, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable
- Tue 13:00–14:50 UP2
- Timetable of Seminar Groups:
- Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
doc. Mgr. Jaroslav Hrdina, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable
- Tue 13:00–14:50 N41
- Timetable of Seminar Groups:
M3130/02: Wed 14:00–15:50 UP2, M. Čadek - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Profesional Statistics and Data Analysis (programme PřF, B-AM)
- Statistics and Data Analysis (programme PřF, B-AM)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
Mgr. Richard Lastovecki (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable of Seminar Groups
- M3130/01: No timetable has been entered into IS. M. Čadek
M3130/02: No timetable has been entered into IS. R. Lastovecki - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2002
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
prof. RNDr. Jan Paseka, CSc. (lecturer) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Prerequisites
- M2110 Linear algebra II
Knowledge of basic notion of linear algebra including eigenvalues and eigenvectors. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra is devoted to more advanced topics: the structure of linear endomorphisms (including Jordan canonical form) and multilinear algebra. These topics find applications in ordinary differential equations, differential geometry and physics.
- Syllabus
- Geometry of linear endomorphisms: eigenvalues, root subspaces, nilpotent and cyclic endomorphisms, Jordan canonical form. Polynomial matrices: equivalence, canonical form, connection with characteristic and minimal polynomials and with the Jordan canonical form. Duality: dual vector space, dual basis, dual morphism. Multilinear algebra: tensor product, equivalence of different definitions, change of coordinates, functor Hom and its reletion to tensor product.
- Literature
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2010 - only for the accreditation
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Lukáš Vokřínek, PhD. (lecturer)
- Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M2110 Linear algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form.
These topics find applications in differential geometry and linear differential equations.
At the end of this course students should be able to:
*understand the connection between bilinear forms and the geometry of quadrics
*derive geometric properties of quadrics
*compute with tensors both in coordinates and without them
*utilize a different method of finding the Jordan canonical form of a matrix - Syllabus
- Affine and projective spaces: definitions, subspaces, homomorphisms, complexification.
- Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification.
- Metric properties of quadrics: principal directions, principal planes, metric classification.
- Multilinear algebra: dual space, tensor product, external and symmetric products, coordinates of tensors, functor Hom and its relation to the tensor product.
- Polynomial matrices: equivalence, canonical forms, connection with characteristic and minimal polynomial, Jordan canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Teaching methods
- Lectures and tutorials.
- Assessment methods
- Over the semester there will be two written tests at the tutorials. It is required to obtain in total at least half of the points.
The exam consists of a written and an oral part. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.math.muni.cz/~cadek
M3130 Linear Algebra and Geometry III
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 2/2. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
doc. Mgr. Jaroslav Hrdina, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Prerequisites
- M2110 Linear Algebra II
Knowledge of basic notions of linear algebra including eigenvalues and eigenvectors, knowledge of quadratic and bilinear forms. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Course objectives
- The third from the series of lectures on linear algebra and geometry is devoted to the following three topics: quadrics and their classification, multilinear algebra and connection between polynomial matrices and the Jordan canonical form. These topics find applications in differential geometry and ordinary differential equations.
- Syllabus
- Afinne and projective spaces: definitions, subspaces, endomorphisms, complexification. Quadrics in affine and projective spaces: definitions, projective classification, conjugate points, tangent planes, affine classification. Metric properties of quadrics: main directions, main planes, metric classification. Multilinear algebra: dual space, tensor product, external and symmetric products,coordinates of tensors, functor Hom a its relation to tensor product. Polynomial matrices: equivalence, kanonical forms, connection with characteristic and minimal polynomial, Jordanovým canonical form.
- Literature
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Assessment methods (in Czech)
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.math.muni.cz/~cadek
- Enrolment Statistics (recent)