M5180 Numerical Methods II
Faculty of ScienceAutumn 2024
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- RNDr. Bc. Iveta Selingerová, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 16:00–17:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: solve numerical nonlinear equations, define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Solving nonlinear equations - order of convergence, acceleration of convergence, methods for multiple roots, Quasi Newton's method, Steffensen's method
- Roots of polynomials - Sturm's theorem, double Newton's method, Maehly's method, Bairstow's method
- Interpolation - the error of the polynomial interpolation, iterated interpolation, Hermite interpolation polynomial
- Approximation - B-splines, B-spline curves, NURBS curves
- Numerical differentiation - Richardson extrapolation, continuation of curves
- Numerical integration - Gaussian quadratures, special quadrature formula (Lobatt formula, Chebyshev formula), Romberg quadrature formula, adaptive quadratures
- Iterative methods for systems of linear equations - Jacobi method, Gauss-Seidel method.
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Active participation and successfully written test are required for credit.
The exam is written.
The conditions may be specified according to the evolution of the epidemiological situation and the applicable restrictions. - Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2023
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- RNDr. Bc. Iveta Selingerová, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Solving nonlinear equations - order of convergence, acceleration of convergence, methods for multiple roots, Quasi Newton's method, Steffensen's method
- Roots of polynomials - Sturm's theorem, double Newton's method, Maehly's method, Bairstow's method
- Interpolation - the error of the polynomial interpolation, iterated interpolation, Hermite interpolation polynomial
- Approximation - B-splines, B-spline curves, NURBS curves
- Numerical differentiation - Richardson extrapolation, continuation of curves
- Numerical integration - Gaussian quadratures, special quadrature formula (Lobatt formula, Chebyshev formula), Romberg quadrature formula, adaptive quadratures
- Solving systems of linear equations for special matrices - Cholesky's method, Crout's method
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Active participation and successfully written test are required for credit.
The exam is written.
The conditions may be specified according to the evolution of the epidemiological situation and the applicable restrictions. - Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2022
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 9:00–10:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Active participation and successfully written test are required for credit.
The exam is written.
The conditions may be specified according to the evolution of the epidemiological situation and the applicable restrictions. - Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of Scienceautumn 2021
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Active participation and successfully written test are required for credit.
The exam is written.
The conditions may be specified according to the evolution of the epidemiological situation and the applicable restrictions. - Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2020
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 15:00–16:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture.
Teaching will take place online using MS Teams. - Assessment methods
- A successfully written test is required for credit.
The exam is written.
The conditions may be specified according to the evolution of the epidemiological situation and the applicable restrictions. - Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 8:00–9:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Lecture. Attendance of a class exercise is compulsory and a successful written test is required for a credit. The exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2018
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 17. 9. to Fri 14. 12. Wed 8:00–9:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Lecture. Attendance of a class exercise is compulsory and a successful written test is required for a credit. The exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Thu 8:00–9:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course, a student is acquainted with advantages and disadvantages of the methods.
- Learning outcomes
- At the end of the course, the student will be able to: define numerical algorithms for interpolation, differentiation, and integration; explain advantages and disadvantages of the mentioned numerical methods; use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class exercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Lecture. Attendance of a class exercise is compulsory and a successful written test is required for a credit. The exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
RNDr. Bc. Iveta Selingerová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 19. 9. to Sun 18. 12. Thu 10:00–11:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course students will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class excercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
RNDr. Bc. Iveta Selingerová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 12:00–13:50 M2,01021
- Timetable of Seminar Groups:
M5180/02: Mon 16:00–16:50 M6,01011, I. Selingerová - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course students will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation.
Class excercise: 1 hour weekly. Excercise is focused on examples for practicing methods presented in the lecture. - Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jiří Zelinka, Dr. (lecturer)
RNDr. Bc. Iveta Selingerová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 14:00–15:50 M1,01017
- Timetable of Seminar Groups:
M5180/02: Thu 19:00–19:50 M4,01024, I. Selingerová - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course students will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2013
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
RNDr. Bc. Iveta Selingerová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 M1,01017
- Timetable of Seminar Groups:
M5180/02: Tue 12:00–12:50 M6,01011, I. Selingerová - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course students will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial, Newton interpolation polynomial, the error of the polynomial interpolation,iterated inter- polation, Hermite interpolation polynomial, cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial, Richardson extrapolation
- Numerical integration-quadrature formulas, degree of exactness and error, Gaussian quadratures, Lobatto quadrature, Newton-Cotes quadratures composite quadratures, integrals with singularities, adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture: 2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Zdeňka Geršlová (seminar tutor)
RNDr. Bc. Iveta Selingerová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 M1,01017
- Timetable of Seminar Groups:
M5180/02: Tue 17:00–17:50 M2,01021, I. Selingerová
M5180/03: Tue 18:00–18:50 M2,01021, I. Selingerová
M5180/04: Tue 19:00–19:50 M2,01021, I. Selingerová - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture:2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Michaela Benešová (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 8:00–9:50 M2,01021
- Timetable of Seminar Groups:
M5180/02: Thu 15:00–15:50 M3,01023, M. Benešová - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture:2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2010
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M1,01017
- Timetable of Seminar Groups:
M5180/02: Tue 11:00–11:50 M4,01024, J. Zelinka - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture:2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
doc. Mgr. Jan Koláček, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 9:00–10:50 M1,01017
- Timetable of Seminar Groups:
M5180/02: Thu 15:00–15:50 MP1,01014, Thu 15:00–15:50 M3,01023, J. Koláček
M5180/03: Thu 17:00–17:50 M3,01023, Thu 17:00–17:50 MP1,01014, J. Koláček - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture:2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Václav Pink, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 M1,01017
- Timetable of Seminar Groups:
M5180/02: Tue 10:00–10:50 MP1,01014, Tue 10:00–10:50 M1,01017, V. Pink - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Assessment methods
- Lecture and class excercise in a computer room. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
RNDr. Martin Tajovský (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 N41
- Timetable of Seminar Groups:
M5180/02: Mon 13:00–13:50 M3,04005 - dříve Janáčkovo nám. 2a, Mon 13:00–13:50 N41, M. Tajovský - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu-účast na cvičení,získání dostatečného počtu bodů z pisemek během semestru Zkouška:písemná a (ústní).
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2006
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Tue 8:00–9:50 N21
- Timetable of Seminar Groups:
- Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu-účast na cvičení,získání dostatečného počtu bodů z pisemek během semestru Zkouška:písemná a (ústní).
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Thu 13:00–14:50 N21
- Timetable of Seminar Groups:
M5180/02: Thu 9:00–9:50 M3,04005 - dříve Janáčkovo nám. 2a, J. Zelinka, Rozvrhově doporučeno pro FI - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu-účast na cvičení,získání dostatečného počtu bodů z pisemek během semestru Zkouška:písemná a (ústní).
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Martin Viščor (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Mon 14:00–15:50 N21
- Timetable of Seminar Groups:
M5180/02: Tue 11:00–11:50 B003, M. Viščor, Rozvrhově doporučeno: posluchači FI - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu je vypracování zápočtového příkladu (v MATLABu). Zkouška:písemná (test) a ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
doc. Mgr. Jan Koláček, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable of Seminar Groups
- M5180/01: No timetable has been entered into IS. J. Koláček, 3.r.M,Me 4.r.M,Mn
M5180/02: No timetable has been entered into IS. J. Koláček, informatika - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu je vypracování zápočtového příkladu (v MATLABu). Zkouška:písemná (test) a ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
M5180 Introduction to Probability and Statistics
Faculty of ScienceAutumn 1999
- Extent and Intensity
- 2/2/0. 10 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Jaroslav Michálek, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Jaroslav Michálek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Jaroslav Michálek, CSc. - Prerequisites (in Czech)
- M4170 Measure and Integral
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Syllabus (in Czech)
- Elementární pojetí pravděpodobnosti. Axiomatická definice pravděpodobnosti. Nezávislost a podmíněná pravděpodobnost. Náhodné veličiny a vektory. Distribuční funkce. Diskrétní a spojitá rozdělení. Rozdělení transformovaných veličin. Charakteristiky rozdělení. Podmíněná rozdělení. Podmíněná střední hodnota. Charakteristická funkce. Zákony velkých čísel. Centrální limitní věta. Základní pojmy matematické statistiky. Náhodné výběry z normálního rozdělení. Bodové a intervalové odhady. Testování statistických hypotéz.
- Literature
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. 1, vyd. Praha: SPN, 1984, 204 pp. Skriptum UJEP. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceSpring 2025
The course is not taught in Spring 2025
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceSpring 2024
The course is not taught in Spring 2024
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceSpring 2023
The course is not taught in Spring 2023
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceSpring 2022
The course is not taught in Spring 2022
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceSpring 2021
The course is not taught in Spring 2021
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceSpring 2020
The course is not taught in Spring 2020
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Bc. Iveta Selingerová, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2002
The course is not taught in Autumn 2002
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu je vypracování zápočtového příkladu (v MATLABu). Zkouška:písemná (test) a ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (lecturer) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture:2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2010 - only for the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and integral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 7 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented. During the course a student is acquainted with advantages and diadvantages of the methods.At the end of this course a student will be able to use the numerical methods for solving practical problems.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process
- Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation
- Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,integrals with singularities,adaptive quadratures
- Literature
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- MATHEWS, John H. and Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- Teaching methods
- Lecture:2 hours weekly, theoretical preparation. Class excercise: 1 hour weekly. Theoretical excercise focused on methods presented in the lecture is alternated by excercise in a computer room aimed at algoritmization and programming of presented methods.
- Assessment methods
- Lecture. Attendance of a class excercise is compulsory and a successful written test is required for a credit. Exam is written.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
M5180 Numerical Methods II
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu-účast na cvičení,získání dostatečného počtu bodů z pisemek během semestru Zkouška:písemná a (ústní).
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
- Enrolment Statistics (recent)