M7960 Dynamical Systems
Faculty of ScienceSpring 2025
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- Mgr. Petr Liška, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling.
- Learning outcomes
- After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Written and oral examination. For admission to exam students need to submit three homework assignments.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M7960 Dynamical Systems
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Liška, Ph.D. (lecturer)
doc. RNDr. Michal Veselý, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 19. 2. to Sun 26. 5. Mon 8:00–9:50 M5,01013
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling.
- Learning outcomes
- After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Written and oral examination. For admission to exam students need to submit three homework assignments.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M7960 Dynamical Systems
Faculty of ScienceSpring 2023
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Liška, Ph.D. (lecturer)
doc. RNDr. Michal Veselý, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 16:00–17:50 M2,01021
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling.
- Learning outcomes
- After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Written and oral examination. For admission to exam students need to submit three homework assignments.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M7960 Dynamical Systems
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Liška, Ph.D. (lecturer)
doc. RNDr. Michal Veselý, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 12:00–13:50 M1,01017
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling.
- Learning outcomes
- After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Written and oral examination. For admission to exam students need to submit three homework assignments.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M7960 Dynamical Systems
Faculty of ScienceSpring 2021
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Liška, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 1. 3. to Fri 14. 5. Tue 16:00–17:50 online_M4
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling.
- Learning outcomes
- After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Written and oral examination. For admission to exam students need to submit three homework assignments.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M7960 Dynamical Systems
Faculty of ScienceSpring 2020
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling.
- Learning outcomes
- After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents. The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics. Assessment in all cases may be in Czech and English, at the student's choice.
M7960 Dynamical Systems
Faculty of ScienceSpring 2019
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 2. to Fri 17. 5. Tue 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
M7960 Dynamical Systems
Faculty of Sciencespring 2018
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2017
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 20. 2. to Mon 22. 5. Tue 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2016
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- recommended literature
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- not specified
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2015
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 MS1,01016
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2014
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Examination: written and oral. One written test will be realized during the semester. It is required to obtain at least half of the total amount of points. The exam is composed of a written and an oral part. The written part consists of three exercises. It is necessary to obtain at least 1,5 from possible 3 points.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2013
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 MS1,01016
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, class exercises 2 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2012
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, class exercises 2 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2011
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, class exercises 2 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M7960 Dynamical Systems
Faculty of ScienceSpring 2006
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Timetable
- Thu 10:00–11:50 UP1
- Prerequisites (in Czech)
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives (in Czech)
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů, drobné seznámení s nelineárními jevy a chaosem.
- Syllabus (in Czech)
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Assessment methods (in Czech)
- Předmět je zakončen ústní zkouškou.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
M7960 Dynamical Systems
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Prerequisites (in Czech)
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives (in Czech)
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
- Syllabus (in Czech)
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Assessment methods (in Czech)
- Předmět je zakončen zkouškou.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceSpring 2010
The course is not taught in Spring 2010
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction in the modern theory of dynamical systems.
At the end of the course students should be able to understand the concept of dynamic system (discrete and continuous), and the main techniques used for analysis of such systems. - Syllabus
- Dynamics in Nature and Mathematics,
- one-dimensional dynamics by iterations (quadratic maps),
- reccurence and chaos (Sharkovski's Theorem),
- analysis near fixed points (Hartman-Grobman Theorem, invariant manifolds),
- analysis near periodic solution,
- hyperbolic attractors (shifts, horseschoe, solenoid attractor, Lorenz attractor).
- Literature
- KATOK, A. B., Boris HASSELBLATT and Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
- Teaching methods
- Lectures
- Assessment methods
- Oral exam
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceSpring 2009
The course is not taught in Spring 2009
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction in the modern theory of dynamical systems.
At the end of the course students should be able to understand the concept of dynamic system (discrete and continuous), and the main techniques used for analysis of such systems. - Syllabus
- Dynamics in Nature and Mathematics,
- one-dimensional dynamics by iterations (quadratic maps),
- reccurence and chaos (Sharkovski's Theorem),
- analysis near fixed points (Hartman-Grobman Theorem, invariant manifolds),
- analysis near periodic solution,
- hyperbolic attractors (shifts, horseschoe, solenoid attractor, Lorenz attractor).
- Literature
- KATOK, A. B., Boris HASSELBLATT and Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
- Assessment methods
- oral exam
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceSpring 2008
The course is not taught in Spring 2008
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceSpring 2007
The course is not taught in Spring 2007
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceAutumn 2005
The course is not taught in Autumn 2005
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Prerequisites (in Czech)
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives (in Czech)
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
- Syllabus (in Czech)
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Assessment methods (in Czech)
- Předmět je zakončen zkouškou.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceAutumn 2004
The course is not taught in Autumn 2004
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Prerequisites (in Czech)
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives (in Czech)
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
- Syllabus (in Czech)
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Assessment methods (in Czech)
- Předmět je zakončen zkouškou.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
M7960 Dynamical Systems
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Ordinary differential equations: Linear and nonlinear systems of differential equations, existence and uniqueness of solutions, dependence of solutions on initial values and parameters, basics of the stability theory.
Linear algebra: Systems of linear equations, determinants, linear spaces, linear transformation and matrices, canonical form of a matrix. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction to the theory of dynamical systems. Attention is paid to continuous dynamical systems, to the theory of autonomous systems of differential equations, and to mathematical modelling. After passing the course, the student will be able: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected mathematical dynamic deterministic models.
- Syllabus
- 1. Survey of selected resuts from the theory of ordinary differential equations.
- 2. Autonomous equations - basic notions and properties, elementary types of singular points of two-dimensional systems, classification of singular points of linear and perturbed linear systems, the structure of a limit set in R2, Poincaré-Bendixson theory, Dulac criterion, characteristic directions.
- 3. General concept of a dynamical system, continuous and discrete dynamical systems.
- 4. Notion of a mathematical model, classification of models, basic steps of the process of mathematical modelling, formulating a mathematical model, dimensional and mathematical analysis of mathematical models. Selected mathematical models in natural sciences.
- Literature
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef and Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, class exercises 2 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceSpring 2011 - only for the accreditation
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Josef Kalas, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Josef Kalas, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, N-MA)
- Course objectives
- The course is an introduction in the modern theory of dynamical systems.
At the end of the course students should be able to understand the concept of dynamic system (discrete and continuous), and the main techniques used for analysis of such systems. - Syllabus
- Dynamics in Nature and Mathematics,
- one-dimensional dynamics by iterations (quadratic maps),
- reccurence and chaos (Sharkovski's Theorem),
- analysis near fixed points (Hartman-Grobman Theorem, invariant manifolds),
- analysis near periodic solution,
- hyperbolic attractors (shifts, horseschoe, solenoid attractor, Lorenz attractor).
- Literature
- KATOK, A. B., Boris HASSELBLATT and Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
- Teaching methods
- Lectures
- Assessment methods
- Oral exam
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M7960 Dynamical Systems
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
The course is not taught in Spring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Ladislav Adamec, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Ladislav Adamec, CSc. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme PřF, D-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught every week.
- Enrolment Statistics (recent)