M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2010
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18:00–19:50 MS2,01022
- Prerequisites
- M6150 Linear Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2008
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 UP2
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Linear Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of this course, students should be able to: understand and explain basic notions of nonlinear functional analysis and relations between them.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Assessment methods
- Teaching: lecture 3 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2007
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Mon 15:00–16:50 U1
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi.
- Syllabus (in Czech)
- 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Věta o implicitní funkci 3.1. Věta o implicitní funkci 3.2. Věta o lokální inverzi
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2006
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Tue 8:00–9:50 UM
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi.
- Syllabus (in Czech)
- 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Věta o implicitní funkci 3.1. Věta o implicitní funkci 3.2. Věta o lokální inverzi
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2005
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Tue 10:00–11:50 UP2
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi.
- Syllabus (in Czech)
- 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Věta o implicitní funkci 3.1. Věta o implicitní funkci 3.2. Věta o lokální inverzi
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2004
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Mon 15:00–16:50 UK
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi.
- Syllabus (in Czech)
- 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Věta o implicitní funkci 3.1. Věta o implicitní funkci 3.2. Věta o lokální inverzi
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable of Seminar Groups
- M8180/01: No timetable has been entered into IS. A. Lomtatidze
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi.
- Syllabus (in Czech)
- 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Věta o implicitní funkci 3.1. Věta o implicitní funkci 3.2. Věta o lokální inverzi
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2002
- Extent and Intensity
- 2/1/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- 1.Základy diferenciálního počtu v normovaných prostorech - Základní pojmy - Základní věty - Taylorova formule 2.Věta o implicitní funkci a věta o lokální inversi - Věta o implicitní funkci - Věta o lokální inversi - Tečný prostor, Ljusternikova věta 3.Diferencování speciálních operátorů - Operátory Němyckého - Integrální operátory - Aplikace v extrémálních úlohách (variační počet)
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2001
- Extent and Intensity
- 2/1/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- 1.Základy diferenciálního počtu v normovaných prostorech - Základní pojmy - Základní věty - Taylorova formule 2.Věta o implicitní funkci a věta o lokální inversi - Věta o implicitní funkci - Věta o lokální inversi - Tečný prostor, Ljusternikova věta 3.Diferencování speciálních operátorů - Operátory Němyckého - Integrální operátory - Aplikace v extrémálních úlohách (variační počet)
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2000
- Extent and Intensity
- 2/1/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Erich Barvínek, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Erich Barvínek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. RNDr. Erich Barvínek, CSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Syllabus (in Czech)
- 1.Základy diferenciálního počtu v normovaných prostorech - Základní pojmy - Základní věty - Taylorova formule 2.Věta o implicitní funkci a věta o lokální inversi - Věta o implicitní funkci - Věta o lokální inversi - Tečný prostor, Ljusternikova věta 3.Diferencování speciálních operátorů - Operátory Němyckého - Integrální operátory - Aplikace v extrémálních úlohách (variační počet)
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2019
The course is not taught in Spring 2019
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of Sciencespring 2018
The course is not taught in spring 2018
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2017
The course is not taught in Spring 2017
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2016
The course is not taught in Spring 2016
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2015
The course is not taught in Spring 2015
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2014
The course is not taught in Spring 2014
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2013
The course is not taught in Spring 2013
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2012
The course is not taught in Spring 2012
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2011
The course is not taught in Spring 2011
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2009
The course is not taught in Spring 2009
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Linear Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi.
- Syllabus (in Czech)
- 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Věta o implicitní funkci 3.1. Věta o implicitní funkci 3.2. Věta o lokální inverzi
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of Sciencespring 2012 - acreditation
The course is not taught in spring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I and II, Linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Nonlinear functional analysis belongs to advanced parts of university courses in mathematics. It is utilized in many applications. The aim of the course is to introduce the bases of nonlinear functional analysis, namely differential and integral calculus in normed spaces and their applications. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Differential calculus in normed spaces. Freschet and Gateaux differentials. Integral calculus in normed spaces. Newton-Leibnitz formula. Higher order derivatives. Taylor formula. 2. Application of differential calculus. 3. Degree theory.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Nonlinear functional analysis and its applications. Translated by Leo F. Boron. New York: Springer-Verlag, 1990, xv, 469-12. ISBN 354097167X. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- KRASNOSEL‘SKIJ, Mark Aleksandrovič. Topologičeskijje metody v teorii nelinejnych integral'nych uravnenij. Moskva: Techniko teoretičeskoj literatury, 1956, 392 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hours a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
M8180 Nonlinear Functional Analysis
Faculty of ScienceSpring 2011 - only for the accreditation
The course is not taught in Spring 2011 - only for the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M6150 Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught every week.
- Enrolment Statistics (recent)