Z6101 Spatial modelling and introduction to geostatistics

Faculty of Science
Spring 2010
Extent and Intensity
1/2. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Petr Dobrovolný, CSc. (lecturer)
Mgr. Jitka Spurná (seminar tutor)
RNDr. Jakub Trojan, MSc, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Rudolf Brázdil, DrSc.
Department of Geography – Earth Sciences Section – Faculty of Science
Contact Person: prof. RNDr. Petr Dobrovolný, CSc.
Timetable
Tue 14:00–14:50 Z3,02045
  • Timetable of Seminar Groups:
Z6101/01: Tue 15:00–16:50 Z1,01001b, J. Spurná, J. Trojan
Prerequisites (in Czech)
! Z8102 Spatial modelling and geostat.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.

The capacity limit for the course is 20 student(s).
Current registration and enrolment status: enrolled: 0/20, only registered: 0/20
fields of study / plans the course is directly associated with
there are 7 fields of study the course is directly associated with, display
Course objectives
Main objectives can be summarized as follows: Overview of typical methods of cartographic modeling is presented. The course is oriented on map algebra and to the modeling of continuous fields (surfaces). Overview of basic interpolation algorithms is given with the stress on kriging. Interpolation methods are prerequisite for the modeling issues. Elements of DTM construction, classification of spatial data and selected optimization tasks are given. At the end of the course student should be able to understand basic geostatistical methods explained in individual lectures. He/she would be able to explain when to apply individual methods and make reasoned decisions about preconditions that are necessary for proper utilization of geostatistical methods in question. He/she would be able to work with information on data preparation, make deductions based on acquired knowledge concerning geostatistical methods and properly interpret results
Syllabus
  • 1. Presentation of spatial data in the form of continuous surfaces 2. Regular and irregular structures 3. Interpolation methods, basic elements, data sources, sampling. 4. Global and local methods of interpolation, (Thiessen polygons, IDW, splines, trend functions). 5. Geostatistical methods , kriging 6. Digital terrain model constriction, data sources, methods of visualization, DTM derivatives, hydrological modeling. 7. Map algebra 8. Local, focal, zonal and global function 9. Classification of spatial features, fuzzy sets and neural networks 10. Optimization tasks, optimal localization of features 11. Measuring of distances, cost surfaces 12. Multidimensional methods 13. Quality control, analysis of errors and their spreading
Literature
  • DEMERS, Michael N. Fundamentals of geographic information systems. New York: John Wiley & Sons, 1997, xvii, 486. ISBN 0471142840. info
  • BORROUGH, P.A., McDONNELL, R.,A (1988): Principles of Geographical Information Systems. Oxford University Press, Oxford, 333s.
  • DE SMITH, Michael John, Michael F. GOODCHILD and Paul LONGLEY. Geospatial analysis : a comprehensive guide to principles, techniques and software tools. 2nd ed. Leicester: Metador, 2007, xxii, 491. ISBN 9781906221980. info
  • WEBSTER, R. and M. A. OLIVER. Geostatistics for environmental scientists. 2nd ed. Chichester: John Wiley & Sons, 2007, xii, 315. ISBN 9780470028582. info
Teaching methods
Lectures explaining basic terms from geostatistics and spatial autocorrelation and presenting individual examples step by step. Practical training based on 11 exercises that are solved using GIS and geostatistical software.
Assessment methods
One written test at the end. Elaboration of all practical excercises is the necessary conditon to pass the exam.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2010, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2010/Z6101