PřF:C6860 Modern Meth. Pollutant Anal. - Course Information
C6860 Modern Methods of Pollutant Analysis
Faculty of ScienceSpring 2012
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. RNDr. Jana Klánová, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ivan Holoubek, CSc.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Jana Klánová, Ph.D.
Supplier department: RECETOX – Faculty of Science - Timetable
- Mon 11:00–12:50 409-stara KAM1
- Prerequisites
- C6110 course, Environmental Analytical Chemistry or an equivalent should be passed.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, M-CH)
- Inorganic Chemistry (programme PřF, M-CH)
- Biochemistry (programme PřF, M-CH)
- Physical Chemistry (programme PřF, M-CH)
- Macromolecular Chemistry (programme PřF, D-CH) (2)
- Environmental Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, N-CH)
- Macromolecular Chemistry (programme PřF, M-CH)
- General Biology (programme PřF, M-BI, specialization Ekotoxikology)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- Organic Chemistry (programme PřF, M-CH)
- Special Biology (programme PřF, N-EXB)
- Special Biology (programme PřF, N-EXB, specialization Ekotoxikologie)
- Upper Secondary School Teacher Training in Chemistry (programme PřF, M-CH)
- Course objectives
- At the end of the course, students should be able to:
- further develop a concept of the chemical analysis of the environment.
- apply knowledge of the environmental chemistry and toxicology for the successful planning of the analytical experiments. - summarize behavior of pollutants in the environmental matrices and their distribution between the phases. - review the surface exchange and phase transfer processes. - distinguish between the presence, availability and activity of the compound in environmental matrices. - analyze the needs and purposes for the chemical analysis. - connect specific scientific question to the most appropriate sampling, separation and identification method. - explore a term of “advanced methods” (new approaches, new techniques, new pollutants, interdisciplinary connections). To compare the groups of “new” pollutants (brominated flame retardants, perfluorinated compounds, chlorinated paraffins, pharmaceuticals) with the legacy pollutants (polychlorinated dioxins and furans) and recognize the analytical challenges. - exploit new sampling (passive), extraction (accelerated solvent extraction, supercritical fluid extraction), separation and identification methods (combination of the high performance separation with the new techniques of the mass spectrometry) in order to meet the new requirements. - transfer knowledge from other fields, connect to bioanalytical and ecotoxicological methods. - Syllabus
- 1. Application of the environmental chemistry and ecotoxicology for successful planning of field and laboratory experiments 2. Behavior of pollutants in the environmental matrices, their distribution between the phases, surface exchange and phase transfer processes 3. What are we looking for? Presence, availability and activity of organic compounds in the environment 4. New passive techniques for sampling the bioavailable fractions of organic pollutants from the air and water. Equilibrium sampling as a tool for determination of the activity of compounds. 5. Selective methods of extraction (sequential extraction techniques, supercritical fluid, pressurized water extraction) 6. New separation and identification techniques (a combination of the gas chromatography with the high resolution mass spectroscopy (HRMS), high performance liquid chromatography coupled to the mass spectroscopy (LC/MS)). New MS analyzers for determination of specific compounds (Triple quad, Q-trap, Fourier transformation, MALDI) 7. Trace analysis of the legacy pollutants and their metabolites (analytical challenges of the polychlorinated dioxins and furans) 8. New environmental pollutants: brominated flame retardants, perfluorinated compounds, short and medium chain chlorinated paraffins, steroid compounds, pharmaceuticals 9. Bioanalytical methods 10. Interdisciplinary approach (geology, mineralogy, geochemistry, atmospheric chemistry, photochemistry, meteorology, climatology, toxicology, biochemistry, molecular biology) to the interpretation of analytical data
- Literature
- FIFIELD, F. W. and P. J. HAINES. Environmental Analytical Chemistry. (Eds.). London: Blackie Academic & Professional, 1995. ISBN 0-7514-0052-1. info
- SKOOG, Douglas A. and James J. LEARY. Principles of instrumental analysis. 4th ed. Fort Worth: Saunders College Publishing, 1992, xii, 700 s. ISBN 0-03-023343-7. info
- BARCELÓ, D. Environmental Analysis. Techniques, Applications and Quality Assurance. Amsterdam: Elsevier, 1993. Techniques & Instrumentation Anal. Chem., Vol. 13. ISBN 0-444-89648-1. info
- Teaching methods
- Course is organized in the weekly lessons.
- Assessment methods
- oral exam
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2012, recent)
- Permalink: https://is.muni.cz/course/sci/spring2012/C6860