C5340 Thermodynamics of Irreversible Systems

Faculty of Science
Autumn 2002
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
RNDr. Jiří Čermák, DSc. (lecturer)
prof. RNDr. Igor Kučera, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Igor Kučera, DrSc.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Igor Kučera, DrSc.
Prerequisites
Students must have completed the basic courses on mathemathics and physical chemistry.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course summarizes principal axioms of classical equilibrium thermodynamics and explains the principles of of non-equilibrium thermodynamics. The introduced mathematical apparatus is applied to common non-equilibrium processes, especially to transport phenomena. Wihin the area of nonlinear phenomena, emphasis is on understanding the bases of periodic and chaotic behaviour. Simplified theoretical models are also used to analyse the mechanisms of metabolic regulation and prebiotic evolution.
Syllabus
  • 1. Thermodynamic systems, thermodynamic variables, temperature and the 1st principle of thermodynamics, the work, energy. 2. Heat, natural and reversible processes, entropy, thermodynamic potentials and mutual interrelations, measurable thermodynamic quantities, partial and molar quantities, models of thermodynamic systems, the phase rule. 3. Expression for fluxes, the linear non-equilibrium thermodynamics, Onsager's relations. 4. Entropy production, stationary states, transport phenomena. 5. Diffusion-controlled phenomena, diffusion fluxes, diffusion under concentration gradient, an overview of diffusion coefficients. 6. Kinetic interpretation of diffusion. 7. High-diffusivity paths, an influence of ordering upon diffusion, experimental methods. 8. Nonlinear nonequilibrium thermodynamics. Thermodynamic criteria of stability and evolution of systems. 9. Mathematic modeling of the nonlinear dynamic systems (phase space, trajectories, phase portrait, classification of singular points, attractors, strange attractors as fractals, deterministic chaos, bifurcation diagrams, catastrophes). 10. Dissipative structures in physics, chemistry and biology. 11. Examples of computer modeling, laboratory demonstration of the Belousov-Zhabotinsky. 12. General principles of metabolic regulations (stoichiometric effects: cooperation, competition, stoichiometric autocatalysis; kinetic and adaptive signals; homeostasis, multistability, trigger, oscillator). 13. Metabolic control theory (flux control coefficients, elasticity coefficients, response coefficients, mutual relationships, experimental determination, examples of the use). 14. Prebiotic evolution and origin of life (formation of organic compounds, selection of prebiotic polymers, genesis of quasispecies and hypercycles).
Literature
  • FISCHER, Oldřich. Nerovnovážné soustavy : termodynamika nevratných chemických a buněčných procesů. Edited by Igor Kučera. 1. vyd. Praha: Státní pedagogické nakladatelství, 1987, 154 s. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, xvi, 1014. ISBN 0198501013. info
  • COVENEY, Peter V. and Roger HIGHFIELD. Šíp času :cesta vědou za rozluštěním největší záhady lidstva. 1. vyd. Ostrava: Oldag, 1995, 472 s., [1. ISBN 80-85954-08-7. info
  • GLEICK, James. Chaos :vznik nové vědy. Translated by Jaroslav Sedlář - Renata Kamenická. [1. vyd.]. Brno: Ando Publishing, 1996, 349 s. ISBN 80-86047-04-0. info
Assessment methods (in Czech)
Jednosemestrová přednáška v rozsahu 2 hod týdně. Zahrnuje i praktickou demonstraci počítačového modelování a vzniku prostorových a časových struktur při reakci Bělousova a Žabotinského. Zkouška (kolokvium)je ústní.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2002, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2002/C5340