PřF:Bi7490 Intr. to Stochastic Modelling - Course Information
Bi7490 Introduction to Stochastic Modelling
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. RNDr. Ladislav Dušek, Ph.D. (lecturer)
RNDr. Jiří Jarkovský, Ph.D. (lecturer)
RNDr. Jan Mužík, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
Department of Botany and Zoology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Ladislav Dušek, Ph.D. - Prerequisites
- Knowledge on basic unidimensional exploratory statistical techniques, analysis of variance, correlation analysis, regression analysis.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, M-CH)
- Inorganic Chemistry (programme PřF, M-CH)
- Biochemistry (programme PřF, M-CH)
- Ecotoxicology (programme PřF, M-BI)
- Physical Chemistry (programme PřF, M-CH)
- Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, M-CH)
- Macromolecular Chemistry (programme PřF, M-CH)
- Organic Chemistry (programme PřF, M-CH)
- Course objectives
- Basic mathematical procedures with vectors and matrices, linear equations. Introduction to modelling.
Markov chains.
Leslie matrix.
Simple applications of regression analysis.
Estimation of optimum of environmental parameters.
Logistic regression.
Multivariate linear regression.
Generalized multivariate linear model.
Role of correlation analysis in multivariate regression.
Nonlinear regression.
Introduction to time series analysis.
Application of regression in trend analysis.
Forecasting from time series. - Syllabus
- Basic mathematical procedures with vectors and matrices, linear equations. Introduction to modelling.
- Markov chains. Applications in modelling of succession of ecosystem, structure of biological populations.
- Non - homogeneous Markov chains in ecology. Leslie matrix.
- Simple applications of regression analysis.
- Estimation of optimum of environmental parameters. Gaussian curves. Indicator species values.
- Logistic regression - one- and multivariate model.
- Multivariate linear regression. The least square method. The maximum likehood method.
- Generalized multivariate linear model. Analysis of residuals - homoscedacity. Autocorrelation.
- Role of correlation analysis in multivariate regression. Multicolinearity.
- Nonlinear regression.
- Modelling using contingency tables in ecology.
- Introduction to time series analysis. Autocorrelation. Trend analysis. Non-parametric methods for estimation of trends.
- Application of regression in trend analysis. Polynomial regression.
- Box-Jwenkins modelling. Spline methods. Forecasting from time series.
- Literature
- MELOUN, Milan and Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
- Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
- HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
- MCCULLAGH, P. and John A. NELDER. Generalized linear models. 2nd ed. London: Chapman & Hall, 1989, xix, 511. ISBN 0412317605. info
- Cajo J.F. ter Braak, (1996). Unimodal models to relace species to environment. DLO-Agricultural Mathematics Group, Wageningen
- SOKAL, Robert R. and James F. ROHLF. Biometry :the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887 s. ISBN 0-7167-2411-1. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.cba.muni.cz/vyuka/
- Enrolment Statistics (Autumn 2003, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2003/Bi7490