PřF:Bi7015 Nucleic acids chemistry - Course Information
Bi7015 Chemical properties, structure and interactions of nucleic acids
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), graded credit.
- Teacher(s)
- doc. RNDr. Miroslav Fojta, CSc. (lecturer)
prof. RNDr. Emil Paleček, DrSc. (lecturer)
doc. Mgr. Miloslava Fojtová, CSc. (lecturer)
prof. RNDr. Michaela Vorlíčková, DrSc. (lecturer)
Ing. Zuzana Ferenčíková, Ph.D. (assistant)
Mgr. Ivana Kupčíková, DiS. (assistant) - Guaranteed by
- prof. RNDr. Jan Šmarda, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Miroslav Fojta, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 19. 9. to Sun 18. 12. Thu 8:00–9:50 B11/132
- Prerequisites
- Basics of general and physical chemistry, organic chemistry and biochemistry, molecular biology.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, D-CH) (2)
- Inorganic Chemistry (programme PřF, D-CH) (2)
- Biochemistry (programme PřF, M-CH)
- Biochemistry (programme PřF, N-CH)
- Physical Chemistry (programme PřF, D-CH) (2)
- Macromolecular Chemistry (programme PřF, D-CH) (2)
- Environmental Chemistry (programme PřF, D-CH) (2)
- Molecular Biology and Genetics (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, N-BI)
- Molecular Biology and Genetics (programme PřF, N-EXB)
- Organic Chemistry (programme PřF, D-CH) (2)
- Course objectives
- At the end of the course, students should be able to explain chemical-, biochemical-, and physical-chemical features of nucleic acids; he/she will understand the nature of their interactions with small molecules as well as macromolecules, such as proteins and connections with their electrochemical behaviour. Based on acquired knowledge, students will be capable of making reasoned deductions on biological consequences of structural features of nuclei acids and their possible analytical utilization.
- Syllabus
- 1. Introduction. Nucleic acids - history. 2. DNA double helix. Physical properties and conformations of DNA. Isolation and characterisation of nucleic acids. 3. Super-helical DNA. Local DNA structures stabilised by superhelicity. 4. Covalent interactions of DNA with small molecules. DNA damage. 5. Reversible interactions of DNA with small molecules. 6. RNA structure. 7. Oligonucleotides and their analogues. 8. Interactions DNA-proteins. 9. Nucleases, DNA topoisomerases, DNA helicases, DNA ligases. 10. p53 protein and its interactions with DNA. 11. Structure and interactions of DNA in biomedicine. Gene therapy. Immunology of nucleic acids. 12. Methods for analyses of nucleic acids. 13. Electrochemistry on nucleic acids, DNA biosensors.
- Literature
- BLACKBURN, M. G. and M. J. GAIT. Nucleic Acids in Chemistry and Biology. Oxford: Oxford University Press, 1996. info
- SINDEN, Richard R. DNA structure and function. San Diego: Academic Press, 1994, xxiii, 398. ISBN 0126457506. info
- ADAMS, R. L. P., J. T. KNOWLER and D. P. LEADER. The Biochemistry of Nucleic Acids. 10th edit. London: Chapman and Hall, 1986. info
- Teaching methods
- Lectures
- Assessment methods
- Teaching method: lectures Type of exam: written test focused on general knowledge followed by oral exam
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
- Enrolment Statistics (Autumn 2016, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2016/Bi7015