M5120 Lineární statistické modely I

Přírodovědecká fakulta
podzim 2016
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
Mgr. Andrea Kraus, M.Sc., Ph.D. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 19. 9. až Ne 18. 12. Po 8:00–9:50 M2,01021
  • Rozvrh seminárních/paralelních skupin:
M5120/01: Po 19. 9. až Ne 18. 12. Út 11:00–11:50 MP1,01014, A. Kraus
M5120/02: Po 19. 9. až Ne 18. 12. Út 12:00–12:50 MP1,01014, A. Kraus
Předpoklady
KREDITY_MIN(30) && ( M4122 Pravděpodob. a statistika II || M6130 Výpočetní statistika )
Základy diferenciálního a integrálního počtu a lineární algebry. Teorie pravděpodobnosti a matematické statistiky, zejména teorie odhadu a testování statistických hypotéz: na úrovni předmětu M4122. Uživatelská znalost statistického software R: na úrovni předmětu M4130.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Předmět studentům v časovém horizontu jednoho semestru nabízí ucelený pohled na lineární modely jako stěžejní metody statistické analýzy, čítající teorii, softwarovou implementaci, aplikaci a interpretaci. Po absolvování kurzu studenti rozeznají situace, které lze řešit s pomocí lineárních modelů, jsou schopni model formulovat, implementovat a interpretovat jeho výsledky. Jsou si rovněž vědomi limitací těchto technik, v konkrétní situaci dovedou odhadnout, co a proč by mohlo selhat, a jsou schopni takovým problémům předejít menší modifikací procedury.
Osnova
  • Popis problému.
  • Popisné statistiky a grafické vyšetřování závislosti.
  • Projekce, podmíněná střední hodnota normální rozdělení.
  • Korelace.
  • Lineární model bez předpokladu normality.
  • Lineární model za předpokladu normality.
  • Podmodel.
  • Rezidua a diagnostika modelu.
  • Multikolinearita a model s neúplnou hodností.
  • Praktické aspekty, řešení různých problémů.
Literatura
    doporučená literatura
  • WOOD, Simon N. Generalized additive models : an introduction with R. Boca Raton, Fla.: Chapman & Hall/CRC, 2006, xvii, 392. ISBN 1584884746. info
  • FARAWAY, Julian James. Linear models with R. Boca Raton: Chapman & Hall/CRC, 2005, x, 229. ISBN 1584884258. info
  • ZVÁRA, Karel. Regrese. Praha, 2008, 253 s. ISBN 978-80-7378-041-8. info
  • ANDĚL, J. Základy matematické statistiky. Praha: MFF UK, 2005. info
    neurčeno
  • Applied multivariate statistical analysis. Edited by Richard Arnold Johnson - Dean W. Wichern. 6th ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2007, xviii, 773. ISBN 9780131877153. info
  • ANDĚL, Jiří. Matematická statistika. Vyd. 2. Praha: SNTL - nakladatelství technické literatury, Alfa, vydavatelstvo technickej a ekonomickej literatury, 1985, 346 s. URL info
  • RAO, C. Radhakrishna. Lineární metody statistické indukce a jejich aplikace. Translated by Josef Machek. Vyd. 1. Praha: Academia, 1978, 666 s. URL info
Výukové metody
Přednáška: teoretická výuka kombinovaná s praktickými příklady.
Cvičení: praktická cvičení zaměřena na analýzu dat.
Metody hodnocení
Podmínky: uspokojivě zpracovaný semestrální datový projekt, písemná závěrečná zkouška, popřípadě s bonusem za nepovinnou písemnou zkoušku v polovině semestru.
Informace učitele
https://is.muni.cz/auth/el/1431/podzim2016/M5120/index.qwarp
https://is.muni.cz/auth/el/1431/podzim2016/M5120/cviceni.qwarp
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 2010 - akreditace, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023, podzim 2024.