MUC51 Pravděpodobnost a statistika

Přírodovědecká fakulta
podzim 2024
Rozsah
2/2/0. 4 kr. Ukončení: zk.
Vyučováno kontaktně
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
RNDr. Marie Budíková, Dr.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
MUC51/01: Po 14:00–15:50 M4,01024, Po 15:00–15:50 MP1,01014, M. Budíková
MUC51/02: St 10:00–11:50 M6,01011, St 11:00–11:50 MP1,01014, M. Budíková
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je:
seznámit studenty se základními pojmy popisné statistiky a počtu pravděpodobnosti;
ukázat studentům zajímavé příklady, které mohou později využít ve své učitelské praxi;
naučit studenty používat systém STATISTICA.
Výstupy z učení
Po absolvování kurzu studenti
- umí získat informace z datového souboru ve formě tabulek, grafů a číselných charakteristik;
- rozumí základním pravděpodobnostním pojmům, jako je klasická, geometrická a podmíněná pravděpodobnost;
- jsou schopni používat důležitá diskrétní a spojitá pravděpodobnostní rozložení v odpovídajících situacích;
- umí vypočítat střední hodnotu, rozptyl, kovarianci a koeficient korelace diskrétních a spojitých náhodných veličin;
- budou mít dobré znalosti systému STATISTICA.
Osnova
  • Popisná statistika. Základní a výběrový soubor, skalární a vektorové znaky, jejich funkcionální charakteristiky při bodovém a intervalovém zpracování dat. Nominální, ordinální, intervalové a poměrové znaky; jejich číselné charakteristiky.
  • Počet pravděpodobnosti. Empirický zákon velkých čísel, axiomatická definice pravděpodobnostního prostoru a základní vlastnosti pravděpodobnosti. Konstrukce pravděpodobnosti v případě diskrétního základního prostoru, klasická pravděpodobnost. Konstrukce pravděpodobnosti na poli borelovských množin, geometrická pravděpodobnost. Stochasticky nezávislé jevy a podmíněná pravděpodobnost.
  • Náhodné veličiny skalární a vektorové, jejich rozložení v obecném, diskrétním a spojitém případě. Simultánní a marginální rozložení náhodných veličin, stochasticky nezávislé náhodné veličiny, posloupnost nezávislých pokusů, různá diskrétní a spojitá rozložení. Kvantily, střední hodnota, rozptyl, kovariance a koeficient korelace náhodných veličin. Konvergence náhodné posloupnosti, slabý zákon velkých čísel, centrální limitní věta.
Literatura
    povinná literatura
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Popisná statistika. 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 s. ISBN 80-210-1831-3. info
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. 3. vyd. Brno: Masarykova univerzita, 2004, 127 s. ISBN 80-210-3313-4. info
    doporučená literatura
  • BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. vydání první. Praha: Grada Publishing, a.s., 2010, 272 s. edice Expert. ISBN 978-80-247-3243-5. URL info
Výukové metody
Výuka probíhá v rozsahu 2 h přednášky a 2 h cvičení týdně. Část cvičení probíhá v počítačové učebně s využitím speciálního statistického software.
Metody hodnocení
V průběhu semestru studenti píší jeden test. Závěrečná písemná zkouška se skládá z 8 - 10 příkladů, z nichž lze získat až 100 bodů. K úspěšnému zvládnutí je třeba dosáhnout aspoň 51 bodů. Při zkoušce je možno používat studijní literaturu.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2019, podzim 2021, podzim 2022, podzim 2023.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/sci/podzim2024/MUC51