IA006 Selected topics on automata theory

Faculty of Informatics
Autumn 2024
Extent and Intensity
2/1/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
In-person direct teaching
Teacher(s)
prof. RNDr. Mojmír Křetínský, CSc. (lecturer)
Mgr. Juraj Major (seminar tutor)
RNDr. David Klaška (assistant)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Mojmír Křetínský, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics
Timetable
Wed 25. 9. to Wed 18. 12. Wed 10:00–11:50 A218
  • Timetable of Seminar Groups:
IA006/01: Thu 26. 9. to Thu 5. 12. each odd Thursday 14:00–15:50 A318; and Thu 12. 12. 14:00–15:50 A318, J. Major
Prerequisites
Knowlegde corresponding to the courses IB005 - Formal languages and automata and IB107 - Computability and complexity
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 256 student(s).
Current registration and enrolment status: enrolled: 10/256, only registered: 0/256, only registered with preference (fields directly associated with the programme): 0/256
fields of study / plans the course is directly associated with
there are 29 fields of study the course is directly associated with, display
Course objectives
The main aim is to understand and explain selected advanced parts of automata theory, including parsing techniques for deterministic contex-free languages, relationship between finite-state automata and MSO logic, automata on infinite words, and process specifications. Further, students should be able to make reasoned decisions about computational models appropriate for the respective areas and to understand methods and techniques of their applications.
Learning outcomes
At the end of the course students should be able to understand and explain selected advanced parts of automata theory, and to make reasoned decisions about computational models appropriate for the respective area and to understand methods and techniques of their applications.
Syllabus
  • Methods of syntactic analyses of detCFLs.
  • LL(k) grammars and languages, properties and analyzers.
  • LR(k) grammars and languages, properties and analyzers.
  • Relationships between LL, LR and detCFL.
  • Infinite=state transition systems and nondeterminism - bisimulation. Selected decidable problems related to process verification.
  • Finite-state automata and monadic second-order logic
  • Automata and infinite words: infinite words, regular (rational) sets of infinite words.
  • Automata: deterministic and nondeterministic Buchi automata, Muller, Rabin, and Street automata. McNaughton theorem. Relationships.
Literature
  • CHYTIL, Michal. Automaty a gramatiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1984, 331 s. URL info
  • KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
  • Handbook of formal languages. Edited by Grzegorz Rozenberg - Arto Salomaa. Berlin: Springer-Verlag, 1997, xxiv, 873. ISBN 3540614869. info
  • Handbook of formal languages. Edited by Grzegorz Rozenberg - Arto Salomaa. Berlin: Springer-Verlag, 1997, xx, 625. ISBN 3540614869. info
  • SIPPU, Seppo and Eljas SOISALON-SOININEN. Parsing theory : volume 2 : LR(k)and LL(k) parsing. Berlin: Springer-Verlag, 1990, 417 s. ISBN 0-387-51732-4. info
  • další odkazy na studijní literaturu jsou uvedeny na webové stránce předmětu.
Teaching methods
Lectures, exercises, and reading. Optional homeworks.
Assessment methods
One midterm written exam and written final exam. Grading for the course: 25% the midterm exam, 75% the final exam. Exams are written without any reading materials (closed book).
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course is taught annually.
Teacher's information
http://www.fi.muni.cz/usr/kretinsky/fja2.html
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2021, Autumn 2022, Autumn 2023.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2024/IA006