ESF:BPM_STA1 Statistics 1 - Course Information
BPM_STA1 Statistics 1
Faculty of Economics and AdministrationAutumn 2011
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: graded credit.
- Teacher(s)
- doc. Mgr. Maria Králová, Ph.D. (lecturer)
Mgr. Tomáš Lerch (seminar tutor)
Ing. Mgr. Markéta Matulová, Ph.D. (seminar tutor)
Mgr. Jan Orava (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Luboš Bauer, CSc.
Department of Applied Mathematics and Computer Science – Faculty of Economics and Administration
Contact Person: Lenka Hráčková - Timetable
- Mon 9:20–11:00 P102, Mon 9:20–11:00 P101
- Timetable of Seminar Groups:
BPM_STA1/02: Tue 12:00–13:35 S311
BPM_STA1/03: Mon 12:50–14:30 S308
BPM_STA1/04: Wed 17:10–18:45 S313
BPM_STA1/05: Tue 8:30–10:05 S311
BPM_STA1/06: Tue 13:45–15:20 S307
BPM_STA1/07: Wed 14:35–16:15 P304, T. Lerch
BPM_STA1/08: Thu 14:35–16:15 P106, J. Orava
BPM_STA1/09: Thu 11:05–12:45 P201, J. Orava
BPM_STA1/10: Thu 12:50–14:30 P106, J. Orava
BPM_STA1/11: Wed 18:00–19:35 P312, T. Lerch
BPM_STA1/12: Thu 7:40–9:15 P103, M. Matulová
BPM_STA1/13: Thu 12:50–14:30 P104, S. Zlatošová
BPM_STA1/14: No timetable has been entered into IS.
BPM_STA1/15: Wed 12:50–14:30 P104, M. Matulová
BPM_STA1/16: No timetable has been entered into IS. M. Králová
BPM_STA1/17: Mon 16:20–17:55 P104, M. Králová
BPM_STA1/18: Fri 13:45–15:20 P304, M. Králová
BPM_STA1/19: Thu 14:35–16:15 P312, S. Zlatošová
BPM_STA1/20: Thu 9:20–11:00 P103, M. Matulová
BPM_STA1/21: Wed 8:30–10:05 S311
BPM_STA1/22: Wed 11:05–12:45 P104, M. Matulová
BPM_STA1/23: Thu 11:05–12:45 P303, M. Matulová
BPM_STA1/24: Thu 16:20–17:55 S310, S. Zlatošová - Prerequisites (in Czech)
- ( PMMAT2 Mathematics II || PMZMII Introduction to Mathematics II || BPM_MATE Mathematics ) && (! PMSTAI Statistics I )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 21 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to:
- understand and explain the basic terms in calculus of probability and in descriptive statistics;
- apply the probability terms and the descriptive statistics terms to the description of economic events and data;
- use the terminology in the follow-up course of mathematical statistics. - Syllabus
- 1.Frequency and probability, properties of probability, examples.
- 2.Independent events, properties of independent events, sequence of independent events.
- 3. Conditional probability, total probability rule, examples.
- 4. Prior and posterior probabilities, Bayes' theorem, examples.
- 5. Descriptive statistics, quantitative variables, qualitative variables; frequency distributions in tables and graphs, examples of data sets.
- 6. Functional characteristics and numerical descriptive measures for univariate and multivariate quantitative variables, examples.
- 7. Random variable, distribution function and its properties, discrete and continous variable, transformation of random variable.
- 8. Discrete probability distribution, probability function and its properties; continuous probability distribution, probability density and its properties; random vector and its functional characteristics.
- 9. Simultaneous and marginal random vectors, independent random variables, sequence of Bernoulli trials.
- 10. Examples of discrete and continuous probability distributions and their application in the field of economics.
- 11. Numerical measures of probability distribution: expected value, variance, quantile, their properties and application in economics.
- 12. Numerical measures of simultaneous probability distribution: covariance, correlation coefficient, their properties and application in economics.
- 13. Characteristics of random vectors, inequality theorems (Markov inequality theorem, Cebysev inequality theorem).
- Literature
- recommended literature
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- not specified
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika.Sbírka příkladů. (Probability Theory and Mathematical Statistics.Collection of Tasks.). 2.dotisk 2.přeprac.vyd. Brno: Masarykova univerzita Brno, 2002, 127 pp. ISBN 80-210-1832-1. info
- HANOUSEK, Jan and Pavel CHARAMZA. Moderní metody zpracování dat :matematická statistika pro každého. 1. vyd. Praha: Grada, 1992, 210 s. ISBN 80-85623-31-5. info
- HINDLS, Richard, Stanislava HRONOVÁ and Jan SEGER. Statistika pro ekonomy. 4. vyd. Praha: Professional publishing, 2003, 415 s. ISBN 8086419525. info
- Teaching methods
- Theoretical lectures; practical seminar sessions;
- Assessment methods
- Lecture with a seminar
Graded credit requirements:
1. Adequately active participation at seminars
2. Success at progress test
3. Success at final test
A (90,100); B (80,89); C (70,79); D (60,69); E (50,59); F (0,49) - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Nezapisují si studenti, kteří absolvovali předmět PMSTAI. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2011, recent)
- Permalink: https://is.muni.cz/course/econ/autumn2011/BPM_STA1